Select Findings from Snow Analysis
As temperatures increase in WW2100 future scenarios (2010-2099), snow water equivalent varies in its response to temperature. SWE decreases in both the Reference and HighClim scenario, where temperatures increase 2.3 °C and 4.4 °C from the first to the ninth decade, respectively. However, SWE increases in the LowClim scenario for both low and high elevations because the temperature increase is only 0.05 °C, not enough to shift precipitation from snow to rain. There is also a slight increase in winter precipitation. Spatially, changes in snow cover mainly affect the McKenzie and North Santiam sub-basins, as well as high elevation portions of several other sub-basins (Fig. 1).
Snowpack Trends in the Three WW2100 Climate Scenarios
-
Under the LowClim scenario, snow water equivalent in the high elevation zone there is high interdecadal variability and maximum SWE increases by 41%. In the low elevation zone, there is high decadal variability but no significant increase in SWE. (Figs. 2 and 3).
-
Under the Reference and HighClim scenarios, snow water equivalent in the high elevation zone declines 74% and 90% under the Reference and HighClim scenarios, respectively (Figs. 4 and 5).
-
Snow water equivalent in the low elevation zone declines 94% under both the Reference and HighClim scenarios (Figs. 6 and 7). In the HighClim scenario, low elevation snow essentially disappears by mid-century.
-
Declines in SWE in the Reference and HighClim scenarios are driven by increases in winter temperatures rather than changes in precipitation.
Figure 1. Snow cover in early, mid, late decades of the study period for the Reference Case scenario.
Changes in Volumetric Water Storage in Snowpack
We computed the difference in total volumetric water storage in the snowpack using the first and last decades of the model run and combining snow storage in both the high and low elevations zones. The LowClim scenario sees an increase of 324,285 ac-ft (0.40 km3), the Reference scenario sees a decrease of 2,180,818 ac-ft ( 2.70 km3), and the HighClim scenario sees a decrease of 956,642 ac-ft ( 1.17 km3) from the first to the last decade. The larger decline in the Reference scenario is because there is a single outlier year of extremely high snowpack during the first decade of the Reference scenario that doesn’t occur in the other two scenarios.
Because we did not run a counterfactual case controlling for the effects of wildfire, we are not able to tease apart the effects of climate from those of wildfire on snowpack. However, our field measurements indicate that dense, low elevation forests tend to decrease snowpack due to both canopy interception (reducing accumulation on the ground) and thermal effects that lead to faster melt. At the highest elevations, forests are lower density and colder, so canopy interception and thermal effects are lower. In burned areas, our field studies show that decreased canopy increases snow accumulation, but deposition of charred debris on snow leads to earlier snowmelt by several weeks. Thus, we speculate that forest fires will lead to increased snow accumulation but earlier melt. Forest harvest, especially thinning, may allow greater retention of snowpacks, though higher winter temperatures cause considerable declines in total snowpack at all elevations.
Conclusions
Pacific Northwest mountain snowpack is highly temperature sensitive. In recent decades, warm temperature anomalies have led to significant declines in snow water equivalent. Differences between the LowClim, Reference, and HighClim scenarios show that relatively small changes in temperature and precipitation affect both the magnitude and direction of temperature change. In the LowClim scenario, the slight temperature increase is insufficient to convert precipitation from snowfall to rainfall; the 19.5% increase in winter precipitation leads to a 41% increase SWE from the first to the last decade of the 90-year period. In contrast, the Reference and HighClim scenarios see significant increases in winter temperature but no change in winter precipitation, thus driving the large declines in SWE. The SWE decreases are especially substantial at lower elevations, which see a disappearance of nearly all snow. Climate-driven changes in snow hydrology are considerable. Less clear are the impacts of changing forest cover on snowpacks.