Washington Status Factors

Elcode NFSM000017
Gname BONDARZEWIA MESENTERICA
Gcomname

Number of Occurrences

$C=21-80$
Comments Current databases (ISMS, OSC, DAVFP, BPI and Castellano 1999, Norvell 1995) indicate that there have been at least 50 occurrences documented from Washington.

Number of Occurrences with Good Viability

D = Some (13-40) occurrences with good viability
Comments Approximately 20 occurrences are located in permanently or temporarily protected reserves. The remaining occurrences should remain viable as long as the host trees survive.

Population Size

$\mathrm{U}=$ Unknown
Comments The slow-working pathogen appears tied to a single-host tree and thus is fairly limited in scope. Each occurrence (not collection) can be assumed to represent one individual and rarely are two fruiting bodies found in the same general vicinity. Molecular analysis of recent survey collections may provide more data, but currently the population size is unknown.

Range Extent

$F=20,000-200,000 \mathrm{~km} 2$ (about 8,000-80,000 square miles)
Comments $\quad B$ mesenterica is found in the Olympic peninsula and in the Cascade mountain range.

Area of Occupancy

$\mathrm{F}=500-2,000 \mathrm{~km} 2$ (about 125,000-500,000 acres)
$\mathrm{G}=2,000-20,000 \mathrm{~km} 2$ (500,000-5,000,000 acres)
LF $=5,000-20,000 \mathrm{~km}$ (about 3,000-12,500 miles)
$L G=20,000-200,000 \mathrm{~km}$ (about 12,500-125,000 miles)
Comments See above. More collections have been noted from the Cascade range.

Long-term Trend in Population Size, Extent of Occurrence, Area of Occupancy, and/or Number or Condition of Occurrences

E = Relatively Stable ($\pm 25 \%$ change)

Comments As the fungus is dependent on late-successional or old-growth forests, the species appears to remain stable as long as the forests remain or other forests mature. If over 25% of the forests are eliminated through fire, pollution, development, or heavy logging, then the long term trend would be ranked at D.

Short-term Trend in Population Size, Extent of Occurrence, Area of Occupancy, and/or Number or Condition of Occurrences

$\mathrm{E}=$ Stable. Population, range, area occupied, and/or number or condition of occurrences unchanged or remaining within $\pm 10 \%$ fluctuation
Comments The same caveats as noted for long-term trends hold here as well.

Threats

$E=$ Localized substantial threat. Threat is moderate to severe for a small but significant proportion of the population, occurrences, or area. Ecological community occurrences are directly impacted over a small area, or in a small portion of their range, but threats require a long-term recovery.

Scope Low Severity Moderate Immediacy Low
Comments The primary threat to the species is the elimination of late-successional and old-growth forest habitats, through fire, pollution, development, mining, or logging activities. Alteration of forest management for shorter rotations and the accompanying decline of late-succession or old-growth habitats are seen as a long term threat.

Number of Appropriately Protected and Managed Occurrences

C $=$ Several (4-12) occurrences appropriately protected and managed
Comments Within Washington, 5 sites lie within permanently protected areas, 4 lie in late-successional reserves, and approximately 3 within riparian reserves.

Intrinsic Vulnerability

B = Moderately Vulnerable. Species exhibits moderate age of maturity, frequency of reproduction, and/or fecundity such that populations generally tend to recover from decreases in abundance over a period of several years (on the order of 5-20 years or 2-5 generations); or species has moderate dispersal capability such that extirpated populations generally become reestablished through natural recolonization (unaided by humans). Ecological community occurrences may be susceptible to changes in composition and structure but tend to recover through natural processes given reasonable time (10-100 years).

Comments The well-being of the organism is tied to the presence of the late-successional/old-growth host conifer.

Environmental Specificity

B = Narrow. Specialist or community with key requirements common.
Comments B mesenterica produces a white stringy rot and is a slow root parasite associated with only conifers such as Abies and Larix (Gilbertson \& Ryvarden 1986, Redhead \& Norvell 1993). As such it requires late-successional or old-growth host trees in order to fruit.

Other Considerations

Also known as Bondarzewia montana, Grifola montana, Polyporus montanus, Cerioporus montanus. Considered a slow-acting root pathogen found in late-successional and old growth forests. Somewhat common in more northerly latitudes but less so as proceed south.

Edition $11 / 18 / 2002$ Edauthor Lorelei L Norvell
Grank S4? Grank Date 11/18/2002

Greasons

Since surveys have been instituted in the northern spotted region, the species has been commonly encountered in Washington where it occurs on 4 permanently protected areas, 5 late-successional reserves, and 2 either in
a riparian reserve or in the unprotected matrix. . Its fruitbody is large and showy, facilitating its find in surveys.

BCD Sources

New Sources

Gilbertson \& Ryvarden. 1986. North American Polypores. Vol. 1. Fungi Flora. Oslo. ALSO Castellano et al. 1999. Handbook to Strategy 1 Fungal Species in the Northwest Forest Plan. USDA-FS PNWRS PNW-GTR476. ALSO Norvell. 1995. ROD: Strategy 1 Fungal Species Evaluation (30 gilled and non-gilled Basidiomycete Strategy 1 species). Unpubl. report on file in the Regional Mycology Lab,Corvallis, Oregon. ALSO US National Collections 11-18-02: http://nt.ars-grin.gov/fungaldatabases/databaseframe.cfm?CFID=225771\& CFTOKEN=11762541 ALSO OSU Fungal collections 11-18-02: http://ocid.nacse.org/research/herbarium/myco/index.html ALSO Canadian Forest Service Pacific Forestry Center Herbarium11-18-02: http://www.pfc.cfs.nrcan.gc.ca/biodiversity/herbarium/searchbyfungus_e.html ALSO Bondartsev. 1953 (1971 transl.). The Polyporaceae of the European USSR and Caucasia. Israel program for scientific translations. ALSO Redhead \& Norvell. 1993. Notes on Bondarzewia, Heterobasidion, and Pleurogala. Mycotaxon 48: 371-380.

