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Executive Summary 
The Vegetation Mapping Inventory (VMI) is an effort by the National Park Service (NPS) to 
classify, describe, and map vegetation communities present on NPS units across the United States. 
The Institute for Natural Resources, working in cooperation with the NPS North Coast and Cascades 
Network (NCCN), has completed a VMI project for the vegetation communities of North Cascades 
National Park Complex (NOCA), including Ross Lake and Lake Chelan National Recreation Areas 
(NRA). 

The map is based on a vegetation classification developed during the project and was created using a 
inductive modeling approach. Data used to construct the classification were collected between 2005 
and 2015, and included plots from Mount Rainier National Park and Olympic National Park. These 
plots were used to develop and refine the association-level National Vegetation Classification 
(NVC). The associations were combined into map classes based roughly on the NVC alliance-level 
classification, but updated to allow improved map detail and accuracy. Model training data relied 
only on plots from NOCA, also collected during the same years. Independent field accuracy 
assessment data were collected in 2016 and applied to the final map generated later. 

The map development process was organized around the random forests machine learning algorithm. 
The modeling used 2,980 plots representing 151 vegetation associations and 46 map classes. Imagery 
from the National Agriculture Imagery Program and the Sentinel-2 and Landsat 8 satellites, airborne 
lidar bare earth and canopy height data, elevation data from the U.S. Geological Survey 3D Elevation 
Program, and climate normals from the PRISM Climate Group were used to develop a variety of 
predictor metrics. The predictors and the map class calls at each plot were input to a process in which 
each map class was modeled against every other map class in a factorial random forests scheme. We 
used plot-level modeling outcomes and species composition data to adjust the crosswalk between 
association and map class so that floristic consistency and model accuracy were jointly optimized 
across all classes. The map was produced by predicting the factorial models and selecting the overall 
best-performing class at each 3-meter pixel. 

The final vegetation map, including a buffer surrounding the park complex, contains 41 natural 
vegetated classes, five mostly unvegetated natural classes, and five classes representing burned areas 
or anthropogenic disturbance. Conifers, some recently burned, cover about half of the complex. 
Upper montane forests dominated by mountain hemlock (Tsuga mertensiana) and silver fir (Abies 
amabilis) are most abundant in the National Park units. Forests at Ross Lake NRA are characterized 
by Douglas-fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla), and Lake Chelan 
NRA is notable for large expanses of burned forests and Douglas-fir and ponderosa pine (Pinus 
ponderosa) woodlands. Broadleaf and mixed forests occupy only three percent of the complex. 
Riparian broadleaf forests are the most widespread, but mixed paper birch (Betula papyrifera) forests 
are common around Ross Lake, and mixed bigleaf maple (Acer macrophyllum) forests are very 
abundant on debris aprons near the Stehekin River. Shrublands cover fifteen percent of the complex 
and are especially concentrated in the Park units, where they are dominated by Sitka alder (Alnus 
viridis) and mountain-heathers (Phyllodoce empetriformis, Cassiope mertensiana). Snowbrush 
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(Ceanothus velutinus) shrublands, associated with past fire, are common in Lake Chelan NRA. 
Herbaceous vegetation occupies only five percent of the overall landscape, with sparse alpine 
vegetation most common in the Park units, bedrock balds frequent in both NRAs, and green fescue 
(Festuca viridis) mostly associated with Lake Chelan NRA. Sparsely vegetated and entirely bare 
rock cover nearly one-fifth of the complex; bedrock barrens are most common and occupy fully 
sixteen percent. Exposed snow and ice (in the Park units) and lake surfaces (in the NRAs) round out 
the remaining six percent. 

The accuracy assessment (AA) was based on 941 independent field-collected plots representing all 
the vegetated classes, as well as alluvial, colluvial and bedrock barrens and recently burned forests, 
which also often host vegetation communities. They were gathered from an inference area covering 
10.4% of the complex. The overall map accuracy based on this sample was 84.5%. After correcting 
for map class prevalence in the inference area, the overall accuracy was 82.0%. In the accuracy 
assessment section, we review the mapping of all classes failing to meet NPS accuracy standards. 
Possible remedies for each mapping error are considered, and recommendations are provided to NPS 
for possible modifications to the map product in response to the issues identified. 

Many new methodologies for mapping and floristic analysis were developed during this project. 
These innovations were also applied in mapping the other large NCCN national parks. In addition to 
allowing the development of this series of maps, these methods should be useful to the NCCN and 
VMI for other mapping projects and purposes. Products resulting from this project include (a) this 
report, (b) the report supplements listed above, (c) a geodatabase with map polygon attributes, plot 
locations, and project boundaries, (d) training and accuracy assessment plot field forms and data, 
including ground photography, (e) hard copy vegetation maps and (f) metadata for digital products. 
Geospatial products are provided in the Universal Transverse Mercator (UTM) Zone 10 projection 
using the North American Datum of 1983.
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Glossary  
accuracy assessment Statistical analysis to determine the degree to which a map correctly 

represents on-the-ground conditions. 
accuracy assessment plots Field plots collected during the third major phase of field sampling, 

used as ground truth in the AA. 
attempted inference area The spatial region within which plots were targeted in the AA sample 

design. 
classification plots Field plots collected during the first major phase of field sampling, 

used to define the initial vegetation associations (Crawford et al. 
2009). Supplemented by the mapping plots, they were also used to 
define the mapping associations and map classes, and to create model 
training data. 

commission error The frequency with which a map assigns a class where it is not 
present. 

contingency table An AA error matrix documenting the extent of class-specific 
confusion between mapped and ground-truth data (often called a 
“confusion matrix”). 

floristic similarity The degree of species composition resemblance between two plots, 
associations or map classes. 

full-ocular plot A field sample including reasonably complete species cover data. 
inductive model A predictive representation of reality built from provided examples. 
Landsat Mid-resolution U.S. remote sensing satellites, active from 1972–

present. The Landsat data used were at 30-meter resolution. 
lidar Light detection and ranging; a laser-based technology for measuring 

elevation. 
map classes The thematic units to which map polygons are labeled; formed by 

merging similar mapping associations. 
mapping associations The fundamental classification units on which the map classes and 

therefore the NCCN maps are based; formed by revising the NVC 
associations (Crawford et al. 2009, Ramm-Granberg et al. 2021) for 
increased floristic and modeling consistency. 

mapping plots Field plots collected during the second major phase of field sampling. 
Supplemented by the classification plots, they were used to define the 
mapping associations and map classes, and to create model training 
data. 

minimum mapping unit The smallest homogeneous area intended for representation in the 
map; for this project, nominally 500 square meters (0.05 hectares). 

modeling similarity The susceptibility of two plots, associations or map classes to 
incorrect labeling in inductive modeling; in other words, their degree 
of similarity in predictor data. 
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nested texture metrics A method for extracting multi-resolution spatial patterning 
information from imagery, developed at INR. 

omission error The frequency with which a map neglects to show a class where it is 
actually present. 

partial-ocular plot A field sample with incomplete species cover data. 
patch A fairly homogeneous and contiguous area of land cover discernible 

on the ground, typically composed of a single vegetation or abiotic 
land cover type. 

photointerpreted plots Plots assigned to map class based on an assessment of imagery and 
other data sources available in the office, mostly used for training and 
AA of abiotic classes.  

producer’s accuracy The estimated probability that a map is correct where a particular map 
class is found on the ground. 

population contingency table An AA error matrix scaled to the mapped extent of each class in the 
inference area. 

potential natural vegetation The vegetation type that would hypothetically exist at a location 
under a natural disturbance regime. 

predictor data Independent data (e.g., variables derived from imagery, topography, 
climate, etc.) provided to an induction model for prediction of a 
dependent variable (e.g., a map class). 

Python The programming language used for most project geoprocessing. 
quality control Process of improving the quality of data collected and/or entered. 
R The programming language used for most project statistical analyses 
reached inference area The portion of the AIA reached by AA field crews and from which 

accuracy conclusions were drawn. 
random forests An outlier-resistant inductive modeling algorithm (Breiman 2001). 
round robin random forests An extension to random forests developed at INR for modeling a 

large number of classes with reduced sample size-related bias 
sample contingency table An AA error matrix based on raw numbers of samples. 
SCM taxa The botanical taxa on which floristic similarity between plots, 

associations and map classes was determined; mostly species, but also 
including some genera and some sub-genus groupings of species. 

Sentinel-2 Mid-resolution European remote sensing satellites, active from 2015–
present. The Sentinel-2 data used were at 10- to 20-meter resolution. 

species cover match A set of tools for evaluating the degree of fit between a plot and an 
association or map class. Variants were created for use with full-
ocular and partial-ocular plots. 

training data Locations confidently assigned to a particular map class and used to 
build inductive models connecting patterns in predictor data to that 
map class. 

user’s accuracy The estimated probability that a map is correct where a particular map 
class is mapped. 
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1. Introduction 
1.1. Background 
1.1.1. NPS Vegetation Mapping Inventory and National Vegetation Classification 
The Vegetation Mapping Inventory (VMI) was created to classify, map and describe vegetation 
communities on National Park Service units across the United States (NPS 2018). The resulting 
classifications, maps and reports contribute to the inventory of NPS resources and inform 
management and planning decisions. NPS has provided guidelines for vegetation classification (Lea 
2011) and map accuracy assessment (Lea and Curtis 2010). 

VMI maps are based on the National Vegetation Classification (NVC), a collaborative effort to 
classify the vegetation communities of the U.S. in a consistent manner. The NVC grew out of work 
by The Nature Conservancy (TNC), NatureServe, and the Natural Heritage Program network 
(Grossman et al. 1998). It is an evolving classification to which several federal agencies and non-
profit organizations—including NPS, the U.S. Fish and Wildlife Service, the U.S. Geological Survey, 
TNC, and the Ecological Society of America—have contributed. 

The National Vegetation Classification Standard (NVCS) provides the hierarchical structure for the 
NVC. Based in part on an earlier international classification (UNESCO 1973), it was originally 
adopted by the Federal Geographic Data Committee (FGDC) in 1997 and updated substantially by 
FGDC (2008). The upper levels of the hierarchy define classes based on broad-scale physiognomic 
and ecological factors (e.g., climate regimes, continentality), the middle levels incorporate floristic 
and additional physiognomic factors based on finer scale variation, and the lower levels are based 
entirely on floristics, including dominant and diagnostic overstory and understory species. The 
hierarchy for natural vegetation and the classification for an association found in Pacific Northwest 
(PNW) montane forests is shown in Table 1. The most recent revision of the NVC was published as 
USNVC (2019). 

Table 1. National Vegetation Classification System hierarchy (version 2, FGDC 2008), and names of all 
levels for an example association. 

Hierarchy level Name Code 

Level 1–Class Forest & Woodland C01 

Level 2–Subclass Temperate & Boreal Forest & Woodland S15 

Level 3–Formation Cool Temperate Forest & Woodland F008 

Level 4–Division Vancouverian Forest & Woodland D192 

Level 5–Macrogroup Vancouverian Subalpine-High Montane Forest M025 

Level 6–Group North-Central Pacific Mountain Hemlock-Silver Fir Woodland G849 

Level 7–Alliance Tsuga mertensiana-Abies amabilis Forest & Woodland A3723 

Level 8–Association Abies amabilis/Rhododendron albiflorum Forest CEGL000225 
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1.1.2. NCCN vegetation inventory project 
The North Coast and Cascades Network (NCCN) vegetation inventory project (VIP) began in 2005. 
The first several years were primarily devoted to developing the regional association-level NVC 
(Crawford et al. 2009). The Institute for Natural Resources (INR) joined the project in 2008 to assist 
with the vegetation mapping portion of the project. In addition to the large parks—Mount Rainier 
National Park (MORA, 956 km2), Olympic National Park (OLYM, 3734 km2) and the North 
Cascades National Park Complex (NOCA, 2769 km2)—INR and NPS also worked cooperatively to 
complete two other mapping projects, the Lewis and Clark National and State Historical Parks 
(LEWI, 38 km2; Kagan et al. 2012) and Ebey’s Landing National Historical Reserve (EBLA, 78 km2; 
Copass and Ramm-Granberg 2016a). 

1.1.3. NOCA vegetation classification and mapping project 
The three large NCCN parks were treated as a single mapping endeavor, but delivered as three 
distinct projects and reports (see also Nielsen et al. 2021a, Nielsen et al. 2021b). Although much of 
the classification and mapping work proceeded concurrently, the fieldwork focus moved from one 
park to another during the map training and accuracy assessment phases. The NOCA project was the 
last of the parks to be sampled in each phase, with training data collection from 2012 to 2014 and 
accuracy assessment fieldwork in 2016. The work at NOCA benefitted substantially from the 
development of a consistent field sampling strategy and the cultivation of an experienced field crew. 
Given the magnitude and complexity of the challenges posed by sampling this very large and diverse 
park, those advantages were key to the project’s success. 

1.2. Approach 
1.2.1. Classification 
Mountainous environments in the Pacific Northwest present interlocking challenges for vegetation 
classification. First, the environmental envelopes of most species are largely determined by local 
climate, which responds in spatially continuous1 and often complex patterns to elevation, aspect, and 
characteristics of the surrounding terrain. Competition results in gradual changes in species 
prominence along gradients that make field assessment of breaks based on thresholds of species 
cover difficult, and chance variation adds to that unreliability. Second, species succession is often 
drawn out over centuries, and its rate varies over both coarse and fine spatial scales. For example, in 
the montane zone, the most characteristic successional process is the gradual establishment and 
increase in cover of silver fir (Abies amabilis). Coarse-scale limitations on seed availability, 
germination and establishment are posed by the prominence of silver fir in the surrounding area and 
by interannual climate variability. At subalpine elevations, successional processes are similarly 
drawn out, but here they also vary at fine spatial scales as micro-habitats differ in their suitability for 
plant establishment in a given year. Succession results in vegetation classification ambiguity because 
most vegetation follows a gradual trajectory with no clear and repeatable breaks between stages. 
Third, at high elevations, the spatial grain of available habitat for individual species is so fine that it 
becomes impractical to delineate all distinct assemblages of species. Here, the vegetation might 

 
1 As contrasted with the more discontinuous influence exerted by factors such as soil chemistry. 
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better be described as a variable mosaic in which assemblage dominance tilts across more coarsely 
scaled gradients. This results in field interpretation challenges because of lack of clarity about the 
minimum patch homogeneity and size needed to constitute a sampling unit. At these elevations each 
species in fact exploits micro-habitat niches that become available to it on an individual basis. 

The starting point for the NCCN map classification was an early draft of the interim NCCN alliances 
later presented in NatureServe (2012). These draft interim alliances were defined by a crosswalk 
from the vegetation associations presented in Crawford et al. (2009). Those associations, in turn, 
were defined by using classification plots—collected from 2005–07 at all NCCN parks—to refine 
and provide context to several previous regional classifications. Collection of mapping plots, which 
were field-assigned to vegetation association using the keys in Crawford et al. (2009), began in 2008, 
using draft versions of those keys. The original plan was to train map models based solely on 
mapping plots, but it quickly became clear that not enough mapping plots had been collected—
particularly at MORA—to adequately train models, so the previously collected classification plots 
were added to the map training pool. The possibility that these plots were assigned to associations 
based on criteria other than the keys in Crawford et al. (2009) presented a potential downside to their 
use for this purpose. 

Early map modeling results found a significant degree of mismatch between the assigned alliance of 
many plots and their modeling tendencies. Through experimentation, it became clear that many of 
the errors were a consequence of dissimilar plots, particularly in conifer forests, being assigned to the 
same alliance due to key breaks that resulted in artificial boundaries between types. Although the 
associations were originally derived via a multivariate cluster analyses and are generally “bloblike” 
in n-dimensional space, the keys carved straight lines through these concepts, squaring them off with 
hard breaks such as “Oplopanax horridus > 5%.” Using key-based calls lowered floristic cohesion 
within the resulting associations and resulted in many plots that modeled poorly as the class to which 
they had been assigned. We addressed this problem by moving to a multivariate clustering approach 
for determining the best floristic match for a given plot.2 

Field data from all plots collected after 2008 included reasonably complete species cover data, which 
allowed us to retroactively reassign association calls if the overall species composition warranted 
that. When this dataset was completed for all three parks, it also enabled us to revise the associations 
themselves in order to correct a variety of pre-existing issues. We termed the revised concepts 
mapping associations, as we were unsure whether the NVC would be adjusted to incorporate them 
(many have in fact been included in Ramm-Granberg et al. 2021). Regardless, the revisions were a 
necessary step in rolling the plot-level data up into a mappable classification. The mapping 
associations were combined into map classes based on their joint floristic and modeling similarities. 

 
2 Although we have provided a dichotomous key for field use in identifying the final map classes (in keeping with 
NPS required deliverables), dropping the use of keys for assigning vegetation associations was an essential step in 
deriving map classes with floristic and modeling cohesion. 
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Despite additional steps involved in their production, many of the mapped classes bear strong 
resemblances to the original concepts presented in NatureServe (2012). 

Another classification challenge we encountered was that areas recently disturbed by fire, flooding or 
mass movement sometimes fit awkwardly into the original NVC associations. We moved away from 
strict floristics-based labeling of plots affected by disturbance and considered their setting and site 
history as well. Several iterations of plot-level examination and reassignment followed by 
association-level floristic recalculation resulted in convergence of the classification on several 
floristically consistent associations often connected with natural disturbance. Past anthropogenic 
disturbance, such as selective logging of Sitka spruce (Picea sitchensis) near the coast3, also 
occasionally resulted in ambiguities. Moving away from key-based assignment of association calls 
helped considerably here: in the case of logged Sitka spruce, enough floristic signals persisted from 
the natural vegetation community that the correct call was evident, even if the spruce cover was now 
well below ten percent. Finally, areas experiencing ongoing change (e.g., conifer encroachment into 
established meadows) also present a challenge as the combination of species may not have been well-
represented in the past. Some flexibility is necessary in such areas, which are likely harbingers of 
greater dilemmas to come. 

1.2.2. Mapping 
In contrast to many VMI products, we mapped the large NCCN parks using automated model-based 
methods rather than photo-interpretation (PI). This decision was originally made because of the size 
of the parks and the indistinct appearance of many of the map classes in imagery. For example, two-
thirds of the NCCN parks are covered by coniferous forests and woodlands of 24 different map 
classes. The component tree species generally cannot be visually distinguished, and many are 
recognized in the field based as much on their understory composition. In addition, the gradual 
change of species prominence along climatic gradients in PNW forests, and the variable and patchy 
species composition characteristic of many non-forest patches, result in a landscape that is not easily 
divided by hand into discrete patches.4 Despite this, and the inherent classification challenges 
discussed above, sites within the parks can be broken repeatably into map classes based on their full 
species composition, and these classes can be reliably mapped using model-based techniques. 

We used an inductive modeling process, in which a computer learns how to distinguish map classes 
by the examples provided from field plots. We used the random forests algorithm (RF; Breiman 
2001), as adapted for the R language (Liaw and Wiener 2002). The large number and unequal 
abundance of map classes proved to be a challenge to multi-class models, which were unable to 
simultaneously perform well at the prediction of all classes. To address this, we decomposed each 

 
3 Because the same classification pertains to MORA, OLYM and NOCA, throughout the text we have chosen 
examples to illustrate our approach from across the three parks 

4 Many non-forest classes might have been mapped by hand with ideally timed high-resolution aerial imagery. 
However, we did not feel that the expense of collecting such imagery over the large expanse of the parks could be 
justified for an uncertain outcome that still would have left the forested lands unmappable via photo-interpretation. 
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multi-class model into many one versus one binary models, in which individual map classes were 
modeled directly against each other (see Bishop 2006, p. 339). We used a novel predictor selection 
scheme that reduced prediction time, limited collinearity in the predictive variables, and co-
optimized model accuracy and effective spatial resolution. The model-based results were manually 
edited where needed5 and then subjected to a map accuracy assessment based on independent field 
data collected based on a stratified random sample. 

1.2.3. Spatial resolution and minimum mapping unit 
Several map classes often occur in patches of 100 m2 or smaller. We attempted to capture these 
occurrences, and to produce a map resembling manually delineated VMI maps, by modeling on 3-
meter pixels (9 m2). We smoothed the raw model outputs and filtered to a class-specific minimum 
patch size ranging from 81–441 m2. Many occurrences above those thresholds likely remained 
undetected, because some essential predictors were derived from coarser resolution sources. Based 
on the average resolution of the predictors selected across all models, a typical minimum mapping 
unit (MMU) of 500 m2 can be assumed, although many patches smaller than that are mapped. 

1.3. Project area 
1.3.1. Geography 
North Cascades National Park Complex is located in the rugged northern Cascade Range on the 
U.S./Canada border in the state of Washington, lying about 150 km (95 miles) northeast of Seattle. It 
is the second largest of the North Coast and Cascades Network parks, with which it is shown in 
Figure 1. It is surrounded by other protected lands, including large wilderness areas in the Mount 
Baker and Okanogan National Forests and several provincial parks in British Columbia. Mount 
Baker, a 3,300-meter (10,800-foot) Cascades stratovolcano, lies nearby to the west, but does not 
create a strong rain shadow within the park. 

 
5 Polygons of some distinct yet rare vegetation types (e.g., ruderal meadows at old farm sites at OLYM) modeled 
poorly due to insufficient training data, but were easily reassigned by hand. Strips adjacent to roads also frequently 
mapped poorly and were reassigned manually.  



 

6 

 
Figure 1. Map of North Coast and Cascades Network National Parks, from Copass and Ramm-Granberg 
(2016b). Fort Vancouver National Historic Site and Lewis & Clark National Historical Park lie farther south 
and are not shown. 

The complex (Figure 2) is comprised of three units: North Cascades National Park, Ross Lake 
National Recreation Area (RLNRA) and Lake Chelan National Recreation Area (LCNRA). The Park 
itself contains a north (NPSN) and south (NPSS) unit. RLNRA mostly hosts lowland conifer and 
broadleaf forests, while LCNRA also includes dry montane and subalpine habitats. The NPS units 
are mostly characterized by montane and subalpine coniferous forests and woodlands, subalpine and 
alpine meadows and shrublands, steep rocky peaks, glaciers and other permanent snow and ice. 
Elevations range from 110 meters (350 feet) to well over 2,750 meters (9,000 feet), with high peaks 
distributed throughout the NPS units. 
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Figure 2. Map of North Cascades National Park Complex, illustrating topography, rivers, roads and other 
features. Units are delineated by solid black lines; from northwest to southeast they are the NPS North 
Unit (NPSN), Ross Lake National Recreation Area (RLNRA), NPS South Unit (NPSS), and Lake Chelan 
National Recreation Area (LCNRA). 

The entire landscape has been extensively shaped by both alpine and continental glaciation, as well 
as by major rivers, including the Skagit, Nooksack, Baker, Cascade and Stehekin. The upper Skagit 
River was drowned beneath Diablo Lake and Ross Lake reservoirs, but Lake Chelan, fed by the 
Stehekin, is a naturally occurring lake whose great depth was increased only slightly by damming. 
The east side of the complex lies in an intense rain shadow cast by the mountains to its west; this 
results in quite distinct vegetation communities, especially in LCNRA where elevations are quite 
low. 
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We defined the project area as the complex (275,942 hectares; 681,867 acres), in addition to a 
variable-width buffer determined by availability of key predictor geospatial data. The surrounding 
buffer area, which was not assessed for map accuracy, accounts for 34% of the total project extent of 
420,604 hectares (1,039,335 acres). 

1.3.2. Environmental setting, bioclimatic zones and major vegetation types 
The North Cascades are a jumbled mélange of folded, faulted, and uplifted terranes, stitched together 
with intrusive plutons and then deeply eroded (Tabor and Haugerud 1999). The range was heavily 
impacted by both continental and alpine glaciation during the Pleistocene. Large glaciers filled the 
river valleys, leaving the highest peaks as nunataks in a sea of ice, and creating broad valley bottoms 
and steep valley walls. Following the retreat of the Cordilleran ice sheet, alpine glaciation continued 
to shape the spires, benches, cirques, and moraines of the higher peaks. 

Vertical relief within the complex spans over 2,700 meters (8,850 feet); the tallest peaks rise half 
their total height in the last two horizontal kilometers. The steep slopes result in the compression of a 
wide range of climates into a short distance. The capture of moisture from Pacific air masses further 
increases climate diversity by superimposing a strong precipitation decrease from west to east. 
Western lowlands and slopes receive about 400 cm (160 in) of precipitation per year, with snow 
accumulations of up to 46 feet (Fleischner and Weisberg 1992), but eastern slopes receive only 150–
200 cm (60–80 in). Although the Cascades hydrologic divide runs well to the east of RLNRA, the 
rugged Picket Range—in the center of the north NPS unit—results in a strong rain shadow around 
Ross Lake, with dry slopes and balds resembling east-side environments (Franklin and Dyrness 
1988). To the south, LCNRA is drier yet. 

A range of disturbance processes reset successional pathways and increase landscape scale 
vegetation complexity. Between 2001 and 2018, wildland fires burned over an estimated 13,800 
hectares (34,000 acres) of the complex, including about 4,900 hectares (12,200 acres) in the year 
2015 (K. Kopper, pers. comm.). Insect outbreaks—primarily of natives such as mountain pine beetle 
(Dendroctonus ponderosae) and western spruce budworm (Choristoneura occidentalis)—habitually 
damage Douglas-fir, lodgepole pine, whitebark pine, silver fir and subalpine fir stands (Hoffman et 
al. 2015). These episodic disturbances primarily impact the east side. Avalanches and landslides are 
disturbance agents which are more equitably distributed across the complex (Antonova et al. 2013). 

Topography, climate, and disturbance dynamics structure the vegetation of the complex, and the 
convergence of three major phytogeographic provinces—the Vancouverian flora from the west, the 
Rocky Mountain flora from the east, and the Canadian Circumboreal province from the north—
further drive significant plant diversity. A total of 1,158 native vascular taxa6 are thought to occur 
within the park (Biven and Rochefort 2010). The major vegetation zones, which are often 

 
6 Although Biven and Rochefort (2010) state that this is the number of native species, the lists provided clearly 
include subspecies and varieties in the count. 
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represented by distinct variants in the northwest, northeast, and southeast portions of the complex, 
are discussed below. 

Lowland forests 
In all but the warmest and driest parts of the park, lowland forests dominated by Douglas-fir 
(Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) occupy most of the landscape up 
to about 750 meters elevation. Western redcedar (Thuja plicata) is important in these forests, and 
grand fir (Abies grandis) is occasionally prominent. Understories vary depending on site moisture 
and stand history. Broadleaf forests in riparian areas are dominated by red alder (Alnus rubra) and 
black cottonwood (Populus trichocarpa), while in uplands they typically represent recovery from 
disturbance and are dominated by bigleaf maple (Acer macrophyllum) and/or paper birch (Betula 
papyrifera), usually with substantial Douglas-fir and other conifers. Talus slopes and the lower 
portions of avalanche tracks are occupied by tall vine maple (Acer circinatum) shrublands which 
extend up into the montane zone. In the rain shadow of the Picket Range, east of Ross Lake, western 
hemlock is substantially less prominent and paper birch is increasingly important. To the southeast, 
in the Stehekin watershed and adjacent areas, the lowland forest zone extends to higher elevations. 
Douglas-fir remains the most dominant tree, but it is accompanied in conifer stands primarily by 
ponderosa pine (Pinus ponderosa), and in mixed broadleaf stands by bigleaf maple. 

Lower montane forests 
The lower montane zone is defined primarily based on the codominance of silver fir (Abies amabilis) 
with western hemlock and the rarity of tree species associated with higher elevations. The lowest 
occurrences of silver fir are in moist forests on valley bottoms and north-facing slopes. The bulk of 
the zone, however, occurs in valley wall settings. On the west side, mesic forests characterized by 
silver fir and western hemlock are predominant up to about 1,150 meters elevation. In the area 
around Ross Lake, many areas with bedrock-limited soils are occupied by lodgepole pine (Pinus 
contorta) stands, which occupy lower montane elevations despite the relative scarcity of silver fir 
there. The zone is increasingly constricted toward the southeast as lowland forests extend higher. It is 
essentially eliminated in the Stehekin watershed, where lowland forests contact the upper montane 
zone. Though widespread, the lower montane zone occupies a smaller proportion of NOCA than the 
other NCCN parks7 due to the steeper and generally drier conditions. 

Upper montane forests 
The upper montane zone is characterized by closed forests with substantial cover of higher elevation 
species such as mountain hemlock (Tsuga mertensiana), subalpine fir (Abies lasiocarpa) and Alaska-
cedar (Callitropsis nootkatensis). It ranges from about 1,150 to 1,500 meters on the west side, where 
silver fir remains at least codominant, and from 900 to 1,600 meters on the east side, where Douglas-
fir extends upward from lowland forests and generally codominates with subalpine fir. Tall 
shrublands of Sitka alder (Alnus viridis), often with Alaska-cedar, are frequent in avalanche tracks 
and other disturbed areas. On the east side, and particularly in the Stehekin watershed, dense post-fire 

 
7 The lower montane zone is especially abundant at OLYM.  
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shrublands of snowbrush (Ceanothus velutinus) and Scouler’s willow (Salix scouleriana) are 
common. 

Subalpine environments 
Above the closed forest zone, upper montane forests transition into subalpine woodlands and tree 
islands. Subalpine parklands, mosaics of wooded areas with dwarf shrublands and meadows, are 
predominant from about 1,500 to 1,700 meters elevation on the west side, where mountain hemlock 
and Alaska-cedar are the dominant trees, and from 1,600 to 1,900 meters on the east side, where 
subalpine fir is more significant. On the driest east-side ridges, whitebark pine (Pinus albicaulis) and 
subalpine larch (Larix lyallii) join subalpine fir. These woodlands and tree islands are interspersed 
with shrublands and meadows at a range of spatial scales. Subalpine shrublands are characterized by 
dwarf ericaceous shrubs such as pink mountain-heather (Phyllodoce empetriformis), white mountain-
heather (Cassiope mertensiana), Cascade blueberry (Vaccinium deliciosum) and grouse whortleberry 
(Vaccinium scoparium), with some taller shrubs such as big huckleberry (Vaccinium 
membranaceum) and Sitka mountain-ash (Sorbus sitchensis) in protected areas. Herbaceous 
subalpine vegetation is represented by several meadow types, with common species including 
subalpine lupine (Lupinus latifolius), wandering daisy (Erigeron glacialis), green fescue (Festuca 
viridula), showy sedge (Carex spectabilis), mountain sandwort (Eremogone capillaris), scarlet 
Indian paintbrush (Castilleja miniata) and spreading phlox (Phlox diffusa). 

Alpine environments 
In the alpine zone, which generally ranges upward from about 1,700 meters on the west side or 1,900 
meters on the east side, tree cover is reduced to stunted krummholz of mountain hemlock and 
subalpine fir. Dwarf shrublands and meadows transition into sparser alpine variants with shorter 
vegetation and fewer species. Common species include pink and white mountain-heather, 
partridgefoot (Luetkea pectinata), Piper’s woodrush (Luzula piperi), black alpine sedge (Carex 
nigricans), Tolmie’s saxifrage (Micranthes tolmiei), Parry’s and Drummond’s rushes (Juncus parryi, 
J. drummondii), and mountain hairgrass (Vahlodea atropurpurea). Eventually vegetation gives way 
almost completely to barren bedrock, talus, permanent snowfields and glaciers. 

1.3.3. Human history 
The rugged passes of the North Cascades were used by indigenous peoples to move between the 
northwest coast and interior plateau regions of the Pacific Northwest. For at least 10,000 years, 
people living in the lowlands traversed the passes and used the high country to fish, hunt, gather 
plants, conduct religious practices and connect with other tribes from all over the region. The 
landscapes that are now included in the park are intrinsically linked to the cultural identity of these 
tribal groups, which include the Nooksack, Sto:lo, Sauk-Suiattle, Upper Skagit, Chelan, Methow, 
Entiat, Wenatchi and Nlakapamux (Boxberger 1996). 

A majority of the current park was set aside in 1897 as the Washington Forest Reserve, before being 
transferred to the United States Forest Service (USFS). Multiple use management and extraction, 
including grazing, mining, logging, hydroelectric projects and recreation developments occurred 
throughout the first half of the twentieth century. The Seattle City Light Skagit Hydroelectric Project, 
including the Gorge, Diablo and Ross Dams, started in the 1920s and was completed in 1953 (Wilma 
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2003). During this period, failed efforts to create a national park in the region provoked a 
longstanding jurisdictional dispute between the USFS and the NPS. At the time of dam completion, 
the North Cascades remained an extensive, but increasingly isolated pocket of wilderness in a region 
undergoing rapid post-war growth. The conservation movement of the 1960s shifted public support 
in favor of wilderness protection; this sentiment was further strengthened in reaction to increased 
timber extraction pressure. During the early 1960s, there was conflict between disparate park visions: 
some favored wilderness, others a developed natural area with access by roads, trams and helicopters 
(Louter 1998). 

Proposals, negotiations, battles, counterattacks and compromises eventually gave way to legislation 
resolving the competing plans. The long political process culminated with the 1968 establishment of 
one of the largest U.S. wilderness parks created in the latter half of the century. The resulting park 
complex covers a total land and water area of 275,942 ha (684,000 ac).8 Ross Lake National 
Recreation Area (47,275 ha; 17.1% of the full complex) includes Ross Lake itself in addition to 
hydroelectric infrastructure, Highway 20, and associated development. RLNRA and the highway 
split the NPS portion of the complex into the North Unit (118,554 ha; 43.0%) and South Unit (84,328 
ha; 30.6%). The creation of Lake Chelan National Recreation Area (25,784 ha; 9.3%) reduced the 
access concerns of property owners and other stakeholders in the lower Stehekin and upper Lake 
Chelan areas. Lands bordering the complex to the east were retained by the USFS as the Glacier Peak 
and Pasayten Wilderness areas. 

Nearly 95% of the complex is protected as the Stephen Mather Wilderness, which spans the units. 
Development remains minimal, with substantial areas 15–25 linear kilometers (10–15 miles) or more 
from the nearest road. The extensive trail system has few access points, posing challenges to 
fieldwork logistics. 

1.3.4. Previous vegetation studies 
Compared to other parts of the Cascades, the relative inaccessibility of the project area has limited 
the number of vegetation studies. Botanic collections were made starting as early as 1892, but even 
in 2005 collections were generating new voucher records for the park (Biven and Rochefort 2010).9 
Douglas (1972) and Douglas and Bliss (1977) sampled and classified plant communities in the park’s 
subalpine and alpine zones, and Risvold and Fonda (2001) sampled wetlands. Other studies took 
place in specific areas, including the Chilliwack Valley (Comulada 1981), Chowder Ridge (Taylor 
and Douglas 1977), Stetattle Creek (Wagstaff and Taylor 1980), Nooksack Cirque (Oliver et al. 
1985), Big Beaver Valley (Vanbianchi and Wagstaff 1988) and the Lake Chelan area (Alverson and 
Arnett 1986). Fire dynamics research has been done in the Stehekin and Thunder Creek watersheds 
(Prichard 2003, Cwynar 1987). 

 
8 This and all other area figures were computed from a GIS layer provided by NPS. They include water surfaces, 
including that of Ross Lake and Lake Chelan. They may disagree with other published figures which have been 
determined differently. 
9 The inventory conducted by Biven and Rochefort (2010) lists 1,351 vascular plant taxa; of these 1,158 are native. 
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Studies in the broader region and in adjacent areas have also contributed to the understanding of 
vegetation patterns. For example, Franklin and Trapper (1963) classified subalpine communities 
throughout the North Cascades, and extensive sampling and classification development were 
performed in support of a regional analysis of grizzly bear habitat (Almack et al. 1993, Wooten and 
Morrison 2006). Detailed and relevant vegetation community descriptions were developed for the 
adjacent Okanagan (Williams and Lillybridge 1983), Wenatchee (Lillybridge et al. 1995) and Mount 
Baker-Snoqualmie (Henderson et al. 1992) National Forests. Many of these classification results, as 
well as other regional studies, were incorporated into the NVC revisions that have occurred as part of 
this project (Crawford et al. 2009, updated by Ramm-Granberg et al. 2021). 

Vegetation mapping efforts have proceeded in fits and starts over the last 85 years. Mapping of the 
Douglas-fir zone of the entire Pacific Northwest produced detailed maps of dominant forest canopy 
species and disturbance impacts (Andrews and Cowlin 1936). The next spate of mapping came with 
the increasing availability and ease of use of satellite imagery in the 1980s. Agee and Pickford (1985) 
developed a vegetation and fuels map, identifying 22 cover types via ordination and two-way species 
indicator analysis,10 and mapping the types using 60-meter resolution Landsat MSS and climate data 
(Agee and Kertis 1987). Almack et al. (1993) describe the mapping of the classification developed 
above for the Grizzly Bear Ecosystem Mapping Project, also using mid-1980s Landsat MSS data. 
Finally, Pacific Meridian Resources used a modified supervised classification method to map 17 
vegetated and three unvegetated classes, in addition to some elements of vegetation structure, from 
30-meter resolution Landsat TM imagery collected in 1988 (PMR 1997). The classification focused 
on forests; all herbaceous and shrub-dominated vegetation were lumped into a single class each. 

1.4. Project timeline 
The following timeline describes the primary activities during each year of the 15-year project. Only 
activities at NOCA are described; activities were focused on other NCCN parks during several years. 

2005 — NPS project initiation, planning and scoping, fieldwork for accuracy assessment of previous 
generation vegetation map (PMR 1997), database development. 

2006 — Classification fieldwork, planning and scoping, database development. 
2007 — Classification fieldwork, development of association-level NVC and database. 
2008 — INR joins project. Development of map training fieldwork protocols, development of 

association-level and higher-level NVC. 
2009 — Development of map training fieldwork protocols, development of higher level NVC, 

development of predictor metrics methodologies. 
2010 — Development of predictor metrics methodologies. 
2011 — Development of predictor metrics methodologies, NAIP and satellite image collection and 

processing. 
2012 — Map training sample design, map training fieldwork. 

 
10 Eight coniferous forest types were identified, each with an open and closed canopy variant. The other six types 
were broadleaf forests, tall shrublands on avalanche tracks, disturbed lowland herbaceous vegetation, green fescue 
meadows, lush subalpine herbaceous meadows, and mountain-heather dwarf shrublands. 
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2013 — Map training fieldwork, NAIP and satellite image collection and processing. 
2014 — Map training fieldwork. 
2015 — NPS gives INR go-ahead to approach NCCN projects as a single entity and to work on the 

classification as needed for successful mapping. Training data quality control, floristics 
methods development, satellite image collection and processing. 

2016 — Production of draft vegetation map for use in stratification of accuracy assessment sampling, 
AA sample design, AA fieldwork, training data quality control, floristics quality control, 
AA data quality control, mapping associations development, NAIP image collection and 
processing. 

2017 — Training data quality control, floristics quality control, AA data quality control, mapping 
associations development, map classification development, development of new topographic 
predictor metrics, refinement of nested texture metrics methodology. 

2018 — Training data quality control, mapping associations development, map classification 
development, satellite image collection and processing, draft map production. 

2019 — NPS draft map review. Training data quality control, mapping associations completion, map 
classification completion, AA data quality control, development of shadow correction 
methods for NAIP imagery. 

2020 — Production of final maps, AA analysis, report.  
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2. Methods and Results 
Most NPS VMI maps have been produced by photo-interpretation (PI). We used model-based 
methods instead, because of the large size of the NCCN parks and the visual similarity of many of 
the key plant communities. Machine learning methods were used to extrapolate from a large set of 
classified field plots to the full extent of the park. The mapped vegetation units were 3-meter pixels 
rather than polygons, because we found that pixel-based modeling was the only reliable method for 
boundary detection between visually similar map classes. We invented and developed a variety of 
innovative image processing and modeling techniques to achieve finer spatial resolution and greater 
accuracy than is typical of model-based vegetation maps. The primary phases of the mapping 
process—many of which occurred concurrently—were collection and basic quality control of 
training field data (Section 2.1), floristics data treatment and associated plot QC (Section 2.2), 
development of mapping associations and associated plot QC (Section 2.3), crosswalking 
associations to map classes (Section 2.4), acquisition and pre-processing of predictive data sources 
(Section 2.5), development and creation of predictive metrics (Section 2.6), machine learning-based 
modeling (Section 2.7) and post-processing and editing (Section 2.8). 

2.1. Field data 
Field data were used to develop an association classification (Section 2.3) and map classification 
(Section 2.4) and to provide training data for the machine learning processes used to create the map 
(Section 2.7.2). The same classification was used at each of the large NCCN parks; its development 
drew from 4,110 plots collected at MORA, OLYM and NOCA. Because the classification relied on 
data collected from all parks, each of those protocols is reviewed here. The map training data 
included 2,198 field plots, all collected at NOCA, in addition to the PI plots discussed later. 

2.1.1. Sample collection 
We trained predictive models using plots from multiple sampling efforts with distinct sample designs 
and field protocols. Most were collected during the mapping phase of the project, between 2008 and 
2015. Although field protocols evolved over this time, the fundamentals were in place by 2010.11 We 
also used many plots collected in 2006–07, during the initial NVC development phase of the project 
(see Crawford et al. 2009). Many of these plots included full floristic data and suited our needs well. 

Training data for inadequately sampled vegetation types were supplemented by incorporating plots 
from a variety of other field efforts in the parks between 2005 and 2015. Although the protocols 
varied widely for these plots, through the quality control process (Section 2.1.2) we converted all 
data to a standardized format: a circle of known radius georeferenced to aerial imagery collected in 
2015 (Section 2.5.1) and a species list with cover estimates to the nearest one percent (or trace if 

 
11 The primary requirements were (a) plot dimensions adjusted to match a homogeneous vegetation patch, up to a 
maximum 40-m radius circle; (b) documented plot center location and radius in four cardinal directions; (c) diagram 
illustrating landmarks and land cover transitions, for spatial QC; (d) reasonably complete floristic data including 
visual percent cover estimates; and (e) photos at cardinal directions from center, for later spatial and floristic QC. 
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present in smaller amounts). Plots with reasonably complete species occurrence data were designated 
full-ocular plots, while those with incomplete data were designated as partial-ocular. 

The following sections outline the sample designs, field protocols, and data QC procedures for all 
plots used to create the map classification or the NOCA vegetation map. Table 2 summarizes this 
information. The table does not include photo-interpreted plots, which were mainly used as training 
for unvegetated classes. 

Table 2. Total number of field plots used to create the map classification (“full floristics plots”) and the 
NOCA vegetation map (“model plots”), categorized by park and collection effort. “Ocular type” specifies 
whether documenting full species cover data was an objective of the protocol. Photo-interpreted plots 
were also used for modeling; those are not included here. 

Collection effort 
Collection 
years 

Collected 
by 

Ocular 
type 

Full Floristic plots Model plots A 

MORA OLYM NOCA NOCA 

VIP classification 2006–07 NPS Full 186 228 79 88 

VIP mapping protocol X 2008 NPS Partial D 44 0 0 0 

VIP mapping protocol M B 2009–11 NPS Partial D 33 10 0 0 

VIP mapping protocol Y 2009–11 NPS Full 151 1,094 0 0 

VIP mapping protocol Z C 2012–15 NPS Full 0 233 1,612 1881 

VIP mapping protocol Q 2014, 2019 INR, NPS Partial D 1 0 0 0 

PMR accuracy assessment 2005–06 NPS Full 61 18 10 134 

Monitoring reconnaissance 2005–14 NPS Full 91 46 48 95 

UW forest community 2015 UW Full 165 0 0 0 

Total – – – 732 1,629 1,749 2,198 
A There is a large amount of overlap with full floristics plots collected at NOCA. Totals include additional training 

data created in adjacent or included patches based on plot notes. 
B Totals reflect number of individual patches from subdivision of original mosaic plots. 
C Including verification plots (revisits and updates to previously collected plots using revised protocols). 
D Some plots had floristics supplemented later by inspection of field photos and were treated as full ocular plots. 

NCCN VIP plot types 
The following plot types were collected especially for the NCCN VIP and are listed chronologically. 

Classification (2006–07) 
These plots were intended primarily to support development of the NVC for the NCCN (Crawford et 
al. 2009, Ramm-Granberg et al. 2021) and were collected by NPS at the three major parks. Crews 
sampled a broad range of types.12 The protocol included collection of a comprehensive species list 

 
12 Data collection was particularly focused on vegetation types known to be undersampled in the existing draft 
classification, such as shrub-dominated avalanche chutes. Circular plots were located opportunistically in 
homogenous patches that were large enough to meet plot size recommendations. Forested plots were sampled over 
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with cover estimates and several field photos. Plots were assigned to an association from an early 
draft of the NVC, or to a provisional association if no good match could be determined. 

Mapping protocol X (2008) 
Collected only at MORA, these plots represented the earliest sampling implemented during the VIP 
mapping phase, before significant improvements were made in spring 2009. Polygons segmented 
from true color aerial imagery were targeted for opportunistic sampling. Estimates of crown cover 
were made for up to three tree species, but understory species were generally not documented. At 
least two photos were taken. A vegetation association was selected from an early draft of the NVC.13 

Mapping protocol Y (2009–11) 
A variety of changes to the sample design and field protocols were implemented beginning in the 
2009 field season. A stratified sample design was implemented to guide the effort.14 Map sheets 
produced from resolution-merged aerial and satellite imagery allowed crews to navigate more 
efficiently, locate plots more accurately, and document vegetation patches for later use; similar paper 
maps were used in all subsequent field efforts (see Figure 3 for an example from the NOCA 
fieldwork in 2013). Beginning with protocol Y, plot dimensions were determined by the extent of the 
homogeneous vegetation patch present at plot center, up to a maximum 40-meter radius circle. 
Vegetation transitions along four perpendicular transects from the plot center were documented, and 
the plots were drawn by hand on the map sheet and documented in greater detail in a field diagram 
on the data sheet. Species cover was visually estimated for most plant species present.15. Photos were 
taken at cardinal directions from plot center, and the best-fit vegetation association was selected from 
the newly published NCCN NVC classification (Crawford et al. 2009). 

 

an 11.3-meter radius (400 m2), woodlands and shrublands over an 8.0-meter radius (200 m2), and herbaceous and 
sparsely vegetated plots over a 5.6-meter radius (100 m2). Notes on soil conditions and fire history were taken. 
13 A plot center was selected within a representative homogeneous area for assessment of the vegetation association 
and canopy composition, which was documented within a 20-meter radius circle around the point. A secondary 
association was listed if there was a clearly distinct association located nearby, but no corresponding location 
information was documented. 
14 Sample sites were targeted by using an unsupervised classification technique to break parks into fifty distinct 
strata based on Landsat reflectance data, topographic metrics, and geographic blocks. Within each stratum, targets 
were established in the most homogeneous Landsat pixel clumps within several hundred meters of trails. Field crews 
navigated to these locations and also established opportunistic plots in homogeneous areas, occurrences of 
vegetation types that had been poorly represented in the targeted sampling. 
15 Over the years, field crews were increasingly comprised of returning, experienced members, and the capability to 
collect complete species composition data increased. The OLYM protocol Y data (collected primarily in 2010–11) 
therefore have considerably greater completeness than that from MORA (collected primarily in 2009). NPS’s 
original aim had been to produce a completed map of MORA before the other parks, so the MORA fieldwork was 
done in “hurry-up” mode, and a return there with the more experienced crews was never realized. 
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Figure 3. Completed mapping phase map sheet (protocol Z, 2013). 

Mapping protocol M (2009–11) 
Field crews targeted subalpine and alpine areas to determine whether fine-scale mosaics of distinct 
alliance level vegetation might be combined into recurring mappable types.16 This effort targeted 
mosaics of vegetation patches, each of which was smaller than those considered for sampling during 
prior efforts. Species cover was estimated for the most significant species in each distinct patch. and 
an association was chosen from Crawford et al. (2009). The data were later analyzed to assess 
whether the patches might be combined into consistent coarser-scale vegetation types, but patterns 
were not consistent enough to allow this. 

 
16 Early in the project, we had planned to map to the default NPS vegetation inventory MMU of one half-hectare 
(Lea and Curtis 2010). Most subalpine alliance-level vegetation occurs at considerably finer scales than this. 
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Mapping protocol Z (2012–14) 
Field sampling was guided by a revised stratified sample design.17 The field protocol was similar to 
protocol Y, except that association transitions along each transect were documented in great detail. 
This allowed additional plots to be generated later if needed. Field crews were remarkably stable 
during this period, allowing the collection of more complete species cover data at nearly all plots. 
The data collected during this time period was integral to the refinement of the mapping associations 
(Section 2.3). Protocol Z was the main source of map training data at NOCA; a completed fieldsheet 
is shown in Figure 4. 

Mapping protocol Q (2014) 
The primary aim of this brief sampling effort was to collect data in accessible but unsampled regions 
of MORA, which had remained the most poorly sampled park. Early draft maps had difficulties 
separating forest types containing Tsuga mertensiana from those lacking it. To address this problem, 
we created a species distribution model for T. mertensiana and used it to target locations with an 
intermediate likelihood of presence. We also targeted sites exhibiting a high degree of draft map 
class uncertainty. Plots were 11-meter radius circles. All species with significant presence were 
documented, but cover was only estimated for tree species. Understory plants were simply listed in 
descending order of prominence. 

Other plot types 
We used plots collected for several other projects to provide data for vegetation types that would 
have otherwise been inadequately sampled. During the quality control process (Section 2.1.2) we 
adapted the available information to our purposes, making use of field notes, photos, and imagery. 

PMR accuracy assessment plots (2005–06) 
These plots were collected to assess the accuracy of the previous generation of NCCN vegetation 
maps (Pacific Meridian Resources 1997). Sampling locations were stratified across the mapped 
classes. Plots were 28.5-meter radius circles and were labeled with an association from an early NVC 
draft or with a provisional call. Cover of the top three species in various height strata was collected. 

 
17 Combined unsupervised-supervised classification was used to break the landscape into 52 unique strata of Landsat 
spectral reflectance, climate metrics, and topographic curvature. Again, the most homogeneous accessible areas 
were determined using an automated procedure, and these locations were targeted on an as-needed basis by crews, in 
addition to sampling opportunistically in homogeneous vegetation encountered along the routes. 
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Figure 4. Completed mapping phase data sheet (protocol Z, 2014). 
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Monitoring reconnaissance plots (2005–15) 
Plots were collected in forests and subalpine areas to assess the suitability of randomly selected 
locations for long-term monitoring plots. Forest plots were 50x50-meter squares; subalpine plots 
varied in size. Cover was estimated for dominant species and the surrounding area was coded to an 
association from the most recent available NCCN classification. 

Forest legacy plots (2015) 
Plots collected at MORA in the 1970s and 1980s (Franklin et al. 1988) were revisited in a project of 
Dr. Hille Ris Lambers at the University of Washington. The cover of understory vegetation was 
estimated over several small subplots, but tree species were documented by counting the number of 
stems in distinct bole diameter classes rather than by cover.18 The field notes allowed us to convert 
these estimates into cover estimates that were reasonably compatible with other plots, and the fairly 
complete ocular data collected at these plots were critical in providing reference floristics data at 
MORA, which had been generally undersampled in this regard in earlier efforts. No vegetation type 
was assigned in the field. 

Photo-interpreted plots (2014–19) 
We supplemented the field-collected data for several structurally-defined, abiotic, and otherwise 
distinctive map classes19 by assigning PI locations where it was possible to do so confidently. 
Generally, we approached this as an iterative process, using previous map generations to assign 
additional data in areas that appeared to map poorly. We also used targeted absence plots to improve 
mapping in areas where we could only narrow down the correct answer to one of several map classes 
but were confident that draft maps were in error. These plots were used only in the binary models 
(Section 2.7.3) which pitted the specified possibly correct classes against the clearly incorrect 
classes.20 

 
18 Understory plants were assessed via a cover estimate in four 1x1-meter quadrats and presence/absence in a 4-
meter radius circle; these were converted into an average percent cover for each species. Trees taller than breast 
height were individually measured in a 12.6-meter radius circle and were summarized in m2/ha. We converted the 
stem counts to rough percent cover estimates assuming that crown area was proportional to the square of bole 
diameter at the individual tree level. 
19 The map classes that received PI plots at NOCA were C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND 
(distinctive signature and structure), C21–MOUNTAIN HEMLOCK, SUBALPINE FIR AND HEATHER WOODLAND 
(distinctive structure), C22–SUBALPINE LARCH WOODLAND (larch with fall foliage), C26–CONIFER KRUMMHOLZ AND 
TREED CLIFF, B30–SUCCESSIONAL GRAVEL BAR SHRUBLAND, S40W–LOW ELEVATION SHRUB-DOMINATED WETLAND, 
S43–SITKA ALDER SHRUBLAND (especially on shaded, steep north-facing slopes), S45–VINE MAPLE SHRUBLAND 
(vine maple leaves bright red in 2015 NAIP imagery), S48–SUBALPINE HEATHER SHRUBLAND, S49–ALPINE 
HEATHER SHRUBLAND, H51W–SUBALPINE HERBACEOUS WETLAND, H58–VEGETATED BALD, R71–ALLUVIAL 
BARREN AND DEBRIS-COVERED ICE, R72–COLLUVIAL BARREN, R73–BEDROCK BARREN, W81–FRESH WATER and 
W82–EXPOSED SNOW AND ICE. 
20 Examples included tall shrubland openings in forests (either S43–SITKA ALDER SHRUBLAND or S46–SNOWBRUSH 

AND SCOULER'S WILLOW SHRUBLAND) that had a tendency to map as C16–NORTH CASCADES DOUGLAS-FIR AND 
SUBALPINE FIR WOODLAND, and conifer forests in very flat areas (either C16–NORTH CASCADES DOUGLAS-FIR AND 
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The efforts above resulted in the collection of about 6,500 field plots across the three parks. The 
NOCA field plots used for map training are shown along with photo-interpreted plots in Figure 5. 

 
Figure 5. Model training plot locations. Of the 2,980 plots, 2,198 were collected in the field (shown in 
black), and 782 were photo-interpreted (shown in red). 

2.1.2. Basic quality control 
An extensive quality control process was necessary due to the many distinct field protocols used, the 
variable field effort applied at different plots (particularly regarding species ocular estimates), 
ambiguities in patch delineation and ocular estimates resulting from heterogeneous vegetation, 

 

SUBALPINE FIR WOODLAND or C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND) that had previously mapped as 
W81–FRESH WATER. 
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spatial inaccuracies due to poor GPS reception, field call misassignments caused by key artifacts, 
updates to the NVC vegetation classification during the data collection process, occasional species 
misidentification and data entry errors. The basic quality control steps for training data plots are 
described below. Quality control of floristics data and vegetation association calls are discussed in 
Section 2.2 and Section 2.3, respectively. 

Spatial characteristics 
Because of the fine-scale heterogeneity associated with many vegetation types in the park, we aimed 
to precisely and accurately locate each training plot with respect to the 2015 NAIP, which was the 
finest-resolution predictor dataset available. Minimizing spatial error was particularly important for 
non-forest plots in small patches. 

The vegetation patches represented by field plots varied in size and shape. In order to simplify data 
management and modeling, we converted all plots to a circle throughout which the assigned call was 
applicable, excepting permitted inclusions of 81 m2 or less (nine 3x3-meter pixels). This allowed us 
to represent plots simply as a center point and radius. We used a script to identify the center point 
and radius of the largest circle that would fit within any delineated field polygons. Initial locations 
and radii were set for other plots based on the protocol’s assessment dimensions. For all plots, we 
verified the spatial characteristics by comparing field notes, plot diagrams, and field photos with 
NAIP and coarser-resolution satellite data. 

Plots were flagged for additional review if the GPS center point taken in the field was more than 20 
meters from the center point of the field-drawn polygon. We prioritized positioning the circle in the 
section of the plot closest to the GPS point, assuming that the area nearby was the most thoroughly 
surveyed portion of the plot. If there were signs of inconsistency between the GPS point, the plot 
description, and the appearance of the surroundings in imagery, we prioritized the plot diagram and 
field photos (if provided), repositioning the circle on the plot center as determined by that 
information. 

Disturbance review 
Various disturbances impacted the park in the years between field data collection and acquisition of 
the imagery used for final map production. To prevent the use of training data for which the field-
assigned vegetation type no longer corresponded to a plot’s condition in imagery, we identified and 
excluded plots that were disturbed between their sampling date and the acquisition date of the most 
recent imagery source used in modeling, August 11, 2017.21 Fires were the main source of 
disturbance. We digitized the perimeters and entered the dates of all documented fires in the park 
since 1990. For plots that lay within these perimeters, the sample collection date was compared to the 
disturbance date; if the disturbance occurred after sampling, recent satellite imagery was used to 

 
21 Any disturbance impacting the park since this date will not be reflected in the map. Furthermore, areas disturbed 
within the time window spanned by the predictive imagery sources used (i.e., between summer 2015 and this date) 
may not be represented correctly. 
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assess the extent of disturbance. If conditions no longer resembled those present at the time of 
sampling, the plots were not used in modeling.22 

2.2. Floristics 
2.2.1. Debugging species lists 
A fair number of inconsistencies in species nomenclature occurred in the ocular data, due to the use 
of at least two taxonomic references (Hitchcock and Cronquist 1973, Pojar et al. 2004). For the 
purpose of our analysis, we standardized the records by selecting the most frequently used name in 
the field datasets. We used Burke Herbarium (2020) to identify synonymies and to determine a 
standardized name for taxa where there was no prevalent name in the field datasets. Henceforth we 
refer to these standardized names, used in the field by NPS crews, as field names; we provide a 
crosswalk to Hitchcock and Cronquist (2018) in INR (2021b). 

We systematically addressed problems involving confused taxa that resulted from consistent 
misidentifications during particular field collection efforts and from easily scrambled species names 
and codes. In some cases, resolving these and other thorny issues required that we refer to plot 
photos, field notes, location information and data from surrounding plots. Occasionally we fell back 
on the judgment of experienced botanists that a particular taxonomic record was unlikely. We 
considered the experience level of the field crew involved on such plots in making our decisions. 
Other cases were easier to resolve, such as recognizing that a Eucephalus ledophyllus record at 
NOCA was probably really E. engelmannii, based on their established range boundaries. 

2.2.2. Expanding species lists 
Plots collected under Protocols Y and Z emphasized collection of full-ocular data. Because these 
were the main protocols used for mapping plots at OLYM and NOCA, the relationship between 
floristics and map units (mapping associations or map classes) was very well characterized at those 
parks. In contrast, MORA had very few full-ocular plots, due to the use of the minimal Protocol X 
and the lower overall sampling effort beyond the classification phase. This created two related 
difficulties. First, it reduced the degree to which MORA plots were represented in the relationships 
developed between floristics and map units, which threatened to make the resulting map 
classification less applicable at MORA and thus less representative of the NCCN as a whole. Second, 
it made the MORA association calls—even at plots with full ocular data—less reliable, because the 
distinct character of the vegetation there was not well-captured in the data. 

In an attempt to address these concerns, we made additional efforts to improve the floristic 
completeness of many partial-ocular plots at MORA. For targeted plots in poorly sampled portions of 
the classification, a field botanist examined the plot photos and field notes, adding observed species 
and adjusting cover estimates. We tested the consequences of creating species lists entirely in this 
manner, comparing results to lists generated in the field at full ocular plots. We found that on average 
three-quarters of the species with at least 1% cover were found. Automated placement of these 

 
22 These plots were still used to develop floristic characteristics for the classification, despite no longer persisting in 
that condition. 
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office-created ocular records into an association23 matched the full-ocular result at the association 
level at about 35% frequency and at the map class level at nearly 70% frequency. While field-
collected full-ocular data are clearly preferable, these results represent a significant improvement 
over the level of field detail provided with most partial-ocular plots at MORA. We assigned all plots 
to association or map class manually, based not only on species cover estimates but on the 
cumulative weight of all available evidence. 

In addition, we lowered the standards for labeling MORA plots as full ocular, to better represent the 
park in map unit floristics. In general, if we determined that a plot’s ocular data likely represented all 
prominent species and contained the most significant species in each vegetation layer,24 we 
considered it full-ocular and used it in establishing the floristic characteristics of mapping 
associations and map classes. Despite these efforts, MORA remained poorly represented compared to 
the other parks, though the later incorporation of the forest legacy plots helped considerably (see 
Table 2). 

2.2.3. Taxonomic treatment for floristic analyses 
Plot-level species lists were used in all phases of this project. They were the primary source of data 
we used to assign plots to associations, to rework the mapping associations and form the map classes, 
and to describe the associations and map classes for users. However, the level of floristic detail 
captured varied by observer, collection effort, time of year and weather conditions, especially for 
uncommon, cryptic and ephemeral taxa. Additionally, the number of observations of many less 
common species fell short of the sample sizes needed to generate reliable statistics. To address these 
issues, we aggregated rarer species into groups to increase statistical strength and took other steps to 
reduce variability in floristic detail across plots. We defined a set of analysis taxa in which common 
and readily identifiable species were treated at species level, while less common or troublesome 
(cryptic or otherwise difficult) taxa were treated at genus level or as intermediate sub-genus groups 
defined by lumping species with similar habitats. Some infrequently observed taxa were dropped 
entirely from analyses involving plot-level comparison. 

Troublesome species found in the field were often identified at the genus level.25 Because our 
floristic analysis presupposed that the same taxonomic units were used across all plots, leaving these 
records at genus level would have required lumping the genus and sacrificing the species-level data 
collected across all other plots. To avoid this, we worked to link genus-level calls to a more specific 
taxon, particularly for common genera associated with diverse habitats. We accomplished this by 
creating sub-genus species groups with similar overall morphology, habitat requirements, 

 
23 Automated assignments were made using the species cover–match tools discussed in Section 2.2.4. 
24 We made this determination with reference to our own field experience and by comparing the species lists to 
available field photos and to other data collected nearby. 
25 A few records were identified at family or higher taxonomic levels; these were excluded from analysis. 
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distributional data and community affinities.26 We then assigned genus-level field records to the sub-
genus groups based on the weight of evidence at plots (e.g., elevation, topographic position, species 
co-occurrence matrices). Other less common species and genera were lumped to either the sub-genus 
or genus level, in order to gain necessary sample sizes for analysis. 

Species of Carex and Salix, which are key indicators of several vegetation types, required the most 
attention. In these widespread yet difficult genera, the group formation process focused primarily on 
morphology and habitat requirements. As an example, unknown dwarfed alpine willows were coded 
as Salix nivalis+, which was defined to include S. nivalis as well as S. petrophila and S. cascadensis. 
This entailed losing the distinction between the three alpine species, but we deemed that far 
preferable to combining all of them with unlike lower elevation species such as S. commutata and S. 
sitchensis. Other genera, in which species were less clearly sortable by morphology and life zone, 
were treated primarily based on species affinity data, using the full plot database to develop co-
occurrence relationships and sub-generic groupings.27 Finally, some species that were often confused 
by field crews were also lumped (e.g., Juncus parryi and J. drummondii were lumped as J. parryi+).  

Across 49 genera, 73 distinct sub-genus taxa were created in this manner, with genus-level 
occurrences assigned downwards to them and species-level occurrences lumped upwards into them. 
65 other genera were treated at the genus level, lumping species-level occurrences up. These taxa, in 
addition to the species treated at species level, are cumulatively referred to as SCM taxa (see Section 
2.2.4). Table 2 in INR (2021b) identifies the SCM taxon used for each field-identified taxon.28 Prior 
to publication, plant nomenclature was updated to match Hitchcock and Cronquist (2018); the 
resulting name changes are documented in Table 1 of INR (2021b). 

2.2.4. Floristic analysis tools 
An enormous quality control effort was needed to bring consistency to the association calls across the 
more than 6,100 field plots that were available for use as model training data. We developed several 
floristic analysis tools to allow us to objectively evaluate and prioritize the review of association 
labels. The tools were also used to help guide the development of mapping associations (Section 
2.3). They are briefly described below. 

 
26 Treatment at this level required that we merge the species-level data collected at other plots into the same sub-
genus categories, so determining appropriate categories was critical. Former NPS field botanists Matt Lee, Tynan 
Ramm-Granberg and Rachel Brunner were instrumental in this step. 
27 For example, we treated the genus Arnica as three taxa for analysis: a sub-genus group A. latifolia+, containing A. 
latifolia, A. longifolia, and a taxon identified in the field as A. alpina; another sub-genus group A. mollis+, 
containing A. mollis, A. parryi and a taxon identified as A. amplexicaulis; and a distinct species A. cordifolia. Genus-
level records were assigned to one of the three based on species co-occurrence data. 
28 Henceforth in this report, both actual taxonomic species and the sub-genus groups defined here may be referred to 
simply as species, for simplicity. 
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Species cover match tool 
Associations, and the map classes we developed from them, are defined by their floristics, their 
physiognomic structure, and their position along multiple environmental gradients. We developed a 
tool called species cover match (SCM) to provide a quantitative representation of the degree of fit of 
a plot to the floristic and (to a lesser extent) structural aspects of a class, and to flag plots that were 
outliers within the class to which they were assigned. Generally, these resulted from field crews 
having encountered vegetation communities that had not been treated in Crawford et al. (2009), from 
mixed species lists due to heterogeneous plots combining multiple vegetation patches, from artifacts 
relating to hard breaks in the keys, or from differing crew interpretations of how significantly to 
weight different components of the association descriptions.29 

SCM used the R vegclust package (De Cáceres et al. 2010) to compute the multivariate floristic 
distance of each of the 4,100+ full ocular plots from the centroid of each class, as defined by the plot 
labels.30 In order to more closely align the analysis with the emphasis on vertical stratification in the 
NVC, we weighted the cover values of each SCM taxon by a lifeform-specific31 multiplier, applied 
to the transformed and standardized cover values.32 To approximate the NVC’s structural emphasis, 
we calculated total cover for each lifeform and for all vascular vegetation,33 and incorporated those in 
the analysis as if they were additional taxa. 

 
29 For example, the description for Alnus rubra/Polystichum munitum stated that “the herb layer is always dominated 
by Polystichum munitum,” and also that it “occurs on upland slopes” and “is [a] result of succession after 
[disturbance].” On encountering a plot on an upland slope initiated by disturbance that lacked Polystichum munitum 
dominance but otherwise matched the description, some crews would emphasize the setting and decide it was a good 
enough match, while others would put more emphasis on the insufficient Polystichum munitum and choose another 
alternative. Since the key required 5% or more cover of Polystichum munitum, that might often have been used to 
resolve the question. Using the full species list to make these decisions results in many fewer such ambiguities. 
30 For this analysis, we transformed percent cover via a modified exponential equation (resulting in rapid changes of 
the transformed value in the indicative 2–10% cover range) to mimic breaks in the original association keys and 
allow the multivariate data-driven results to maintain as much compatibility with the keys as possible. We then 
standardized with respect to the mean and standard deviation of each species across all plots. 
31 We assigned all taxa to the following lifeform categories: broadleaf tree, conifer, tall shrub, standard shrub, dwarf 
shrub, forb, grass, sedge, rush, fern, fern ally, bryophyte and lichen (see INR 2021b). 
32 We used a multiplier of 2.0 for conifer and broadleaf tree species, and 1.5 for tall and standard shrubs. All other 
lifeforms had a multiplier of 1.0. In order to give more weight to taxa that were instrumental in defining the 
Crawford et al. (2009) associations, the multiplier for each SCM taxon was increased from its lifeform default 
proportionally to its maximum constancy in any mapping association, up to a maximum of 0.5 for taxa that were 
always present in an association. 
33 For purposes of lifeform totals, broadleaf trees and conifers were split into two vertical categories, GT5 (height 
over five meters) and LT5 (height less than five meters, or regen). Lifeform and total vascular cover were 
transformed using a sigmoidal curve to emphasize change in the region of 10% cover, in keeping with treatment of 
these thresholds in the original association keys. 
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Partial species cover match tool 
Class labels on partial ocular plots could not be evaluated reliably using SCM and vegclust, because 
they didn’t include true absence data (i.e., crews may have simply omitted a species). To evaluate 
these plots, we developed the partial species cover match tool (pSCM), which compared the SCM 
taxon cover estimates for partial-ocular plots to expectations derived from the class constancy and 
cover tables computed from full-ocular plots. The tool output a similarity metric between each partial 
ocular plot and each class and could be used in several different modes. 

Three options were available to control the functioning of pSCM: full mode versus partial mode, 
cover mode versus presence mode, and lifeform mode versus no-lifeform mode. In full mode, pSCM 
penalized absences of taxa that were characteristically present in a vegetation class, while partial 
mode ignored these and so allowed for more missing information. In cover mode, cover estimates for 
a taxon that were significantly greater or less than the average cover for the class were penalized, 
while in presence mode only the presence or absence of a taxon was considered. In lifeform mode, 
lifeform totals were used in the similarity estimate, in addition to taxon cover estimates. Any 
combination of modes from the three options could be selected, allowing tailoring of the assessment 
to the amount of information available at a plot. 

Differential indicators tool 
Finally, we also developed a differential indicators tool (DIT) which we used to determine which of 
two classes was a better fit to a plot based only on the presence of the documented SCM taxa. For 
each present taxon, DIT calculated the ratio between its constancy in two selected classes. Each ratio 
was clamped at a maximum value of 10 before taking its square root. The transformed ratios were 
averaged across all present taxa and compared between the two classes, with the class giving the 
highest average ratio favored. 

SCM, pSCM and DIT were all used to assist in determining the best calls at plots, depending on the 
sampling effort at the plot. SCM was primarily used during the earlier plot QC stages while we were 
still ironing out the mapping associations, while pSCM and DIT were used more in the later phases, 
especially at MORA where full-ocular plots were in short supply. The ability to label partial-ocular 
plots confidently was extremely helpful at increasing the available training data for modeling less 
common map classes at all parks. 

2.3. Mapping associations and plot label QC 
Although the following steps are written in sequential order, the processes occurred in tandem. The 
development of mapping associations and the quality control of plot association calls were strongly 
iterative processes. We have attempted to describe the steps with a minimal number of references to 
other parts of the process, but to some extent that has been unavoidable. 

2.3.1. Mapping associations definition and floristics-based plot QC 
Early drafts of the vegetation maps were based, with minor adjustments, on the vegetation alliances 
defined by NatureServe (2012), which in turn were based on associations defined by Crawford et al. 
(2009). Model error rates (see Section 2.7.5) and preliminary comparison of draft maps from MORA 
(in 2011) and OLYM (in 2013) to independent accuracy assessment data (see Section 3) indicated 
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that the maps were falling well short of accuracy goals. As discussed in Section 1.2.1, it became 
evident through working with the training plots that making field calls based on dichotomous keys 
had resulted in a noisy dataset that may not always have correctly responded to the intentions of 
Crawford et al. (2009). Another source of error may have been the ongoing evolution of the 
classification itself during the fieldwork. Regardless, in some portions of the classification, the 
associations—as defined by the groups of plots assigned to them—lacked the needed floristic 
cohesion to support repeatable field identification and accurate mapping. 

By early 2015, when mapping plot data collected at NOCA were delivered to INR, more than 4,100 
field plots with reasonably complete species composition data were available across the three parks 
for use in floristic calibration. This significantly exceeded the information that had been available for 
the development of the earlier classification. We used the cumulative dataset to enhance the 
classification for floristic consistency and mapping purposes, creating a set of mapping associations. 
Despite their differences, the NCCN parks share many dominant plants and plant communities. We 
took advantage of this commonality, so each park benefitted from plots collected across the network. 

We began by reviewing full ocular plots with SCM. Plots that were significantly more similar to a 
different association than that to which they were assigned were examined to determine why their 
floristics differed from expectations. We checked field photos, plot descriptions, imagery and 
environmental setting, and changed the call to the association suggested by SCM if the balance of 
evidence supported that. For classes that were strongly defined by their vegetation structure (e.g., 
krummholz), we were more lenient in allowing floristic outliers to persist. 

The process was applied iteratively: as plot QC continued, the analysis was occasionally updated, 
tightening the floristic groupings as the number of outliers was reduced in each cluster. In this 
manner, we refined the Crawford et al. (2009) associations while minimizing changes to their 
essential character. SCM was also used to suggest a best call at plots for which no confident call had 
been previously made. 

We continued the revision process by eliminating problematic types from the mapping associations. 
Beginning with the original 311 upland and 50 wetland types, we removed (a) associations with 
fewer than two floristic calibration plots;34 (b) associations distinguished from others based solely on 
total vegetative cover, either cumulative or in a single layer;35 (c) associations named and defined 
based on the presence of a single common species (often a dwarf shrub such as Vaccinium 

 
34 These had often been included in Crawford et al. (2009) based on literature from areas adjacent to the NCCN 
parks. We retained one association with only one plot, Populus tremuloides/Cornus nuttallii, because of its 
distinctiveness and the clear range limitation that prevents it from being more widespread in the parks. 
35 Two examples in Crawford et al. (2009) are the associations labeled as “bryophyte and lithomorphic sparse 
vegetation,” keyed under a break based on the total vascular cover, and the three depauperate understory forest 
associations, keyed on overstory species and low understory vascular plant cover. 
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deliciosum or Juniperus communis), regardless of the other vegetation present;36 and (d) associations 
that were excessively heterogeneous in species composition (as represented in the floristic calibration 
plots), occurring in a variety of settings.37 

We used SCM to reassign affected plots to the next most similar vegetated association, which was 
usually a very good fit. In addition to eliminating associations and merging their plots with similar 
types, we developed new mapping associations for groups of plots that were either poorly 
represented in Crawford et al. (2009) or had become badly tangled in the floristic calibration plots. 
These groups included dry shrublands, dry subalpine and alpine meadows, vegetation of talus slopes 
and avalanche chutes, riparian and wetland shrublands, and seral post-fire vegetation. We created the 
new associations by clustering all plots assigned to an association in each of the groups with the R 
vegclust package (De Cáceres et al. 2010).38 

Forests with depauperate understories provide a good example of the sorts of changes we made to the 
classification. These plots—usually in seral stands, but occasionally in older forests on valley 
bottoms—were originally lumped into associations based solely on the tree canopy species present, 
but we found these often did not model and map well together.39 DIT and pSCM were helpful in 
making the best use of the understory floristic data, even if plants only occurred in trace amounts. For 
mapping purposes, the identities of the species present were much more important than how much 
ground they cover. For instance, we found that a trace amount of Orthilia secunda was a consistent 
indicator of the most common mid-slope successional silver fir association. Silver fir plots with 
equally sparse understories that lacked O. secunda typically had moist site indicators instead, and had 
closer floristic and modeling similarities to lush silver fir associations found on lower slopes. The 
plots simply represented unusually sparse manifestations of those usually lusher types. 

 
36 Most plots assigned to these calls were small and represented a localized patch of the species in question. 
Generally these patches did not correspond to any meaningful landscape pattern, but simply reflected the stochastic 
dispersal and establishment processes of the single species, superimposed on a variety of background vegetation 
types. 
37 Typically, these associations—which were termed catchalls by field crews—resulted from key artifacts. They 
were recognized by their tendency to model with a variety of map classes, depending on the other vegetation present 
in addition to the species on which the key had focused. 
38 We log-transformed raw percent cover data for each SCM taxon and normalized across sites using the decostand 
function in the R vegan package (Oksanen et al. 2019) before using k-means clustering in vegclust. We 
experimented with the number of output clusters until the results captured a similar level of detail to that used 
elsewhere in the classification. 
39 Depauperate conditions occur in the stem-exclusion phase of a range of successional forest types, and can persist 
for over a century in the Pacific Northwest (Agee 1993, p.193). Thus, seral forests can be impossible to place 
definitively into classifications relying on understory species composition, and can be easily confused with very 
distinct valley bottom stands that are similarly depauperate (Franklin et al. 1988, p.126). 
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Our classification efforts resulted in a total of 228 mapping associations in the large NCCN parks. 
Nielsen and Brunner (2021) provide descriptions, including floristic and distribution details, as well 
as more information about the process of creating the associations from the original classification. 

2.3.2. Mapping associations refinement and model-based plot QC 
We also prioritized examination of individual plots using model results to identify plots that modeled 
better as an association different than their current assignment.40 Plots that modeled poorly had often 
been noted as problematic by the field crew and were generally in heterogeneous areas, in very small 
patches, or had mismatched structure and floristics (frequently due to disturbance; e.g., a forest that 
had experienced a blowdown event and was now dominated by shrubs, but with understory species 
more typical of a forest). Other plots that modeled poorly had been mislocated due either to extreme 
GPS error or data entry errors; there was considerable feedback between association-level modeling 
and the spatial QC described in Section 2.1.2. 

An occasional outcome of plot-level model-based QC was a decision that a plot should not be used in 
modeling because of a poor match to any association, an uncertain location, or both. These plots were 
often still useful in refining the classification’s approach to disturbance or in identifying range 
extensions of associations known primarily from another park. Throughout the process, we 
incorporated these observations into refined descriptions of the structure, setting and range of each 
mapping association. 

2.3.3. Final plot check with a hybrid assemblage labeling tool 
In the above QC steps, we considered floristics and modeling similarities separately and only 
examined plots that failed to pass some test by a significant threshold. After development of the 
mapping associations had been completed, we used a final check—the hybrid assemblage labeling 
tool (HALT)—which considered the floristics and modeling analyses simultaneously to spot 
instances where both pointed in the same direction, but perhaps at a lower level of certainty. HALT 
enabled us to detect and reassign about 50 plots to an association that was a better overall fit.  

The QC process, while lengthy, accomplished several critical steps toward development of the map 
classification and the associated map: (a) development of an association-level classification with high 
internal cohesion in both floristics and modeling tendencies; (b) development of clear descriptions of 
floristics, structure and setting for those associations; and (c) allowing maximum use of all plot data 
by improving the consistency of association calls on all plots, and particularly by assigning reliable 
calls to partial-ocular plots. 

 
40 We did this by creating random forests models (see Section 2.7.5) at the association level, examining the 
cumulative out-of-bag error associated with each plot, and noting the alternate associations with which it was most 
frequently confused. 
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2.4. Map classification 
2.4.1. Development of vegetated map classes 

Building crosswalk 
The low accuracies of early draft maps indicated that changes to the alliance concepts were needed. 
A crosswalk to combine mapping associations into floristically cohesive and mappable entities 
provided the structure around which revisions were organized. We used the draft alliances from 
NatureServe (2012) and their relationship to the associations in Crawford et al. (2009) as a reference 
point during the revision process. 

Our goal in this process—described in greater detail in Brunner et al. (2017)—was to minimize class 
confusion, both during field interpretation and in the map. Our approach was data-driven, using a 
quantitative proxy for each of these confusion types. As a proxy for field confusion, we used floristic 
similarity, since the more floristically similar two classes are, the less likely field observers will agree 
on the correct label for a plot. SCM, described in Section 2.2.4, provided an easy way of quantifying 
this at the plot level. To represent map confusion, random forests model confusion was clearly the 
appropriate proxy, as that was the means by which we planned to produce the map.41 The main 
constraint we placed on the process was to follow the NVCS protocol of a many-to-one crosswalk 
between mapping associations and map classes, in which each association was a member of a single 
map class. In order to foster consistent map class definitions across NCCN parks, we aimed to use 
the same crosswalk for each of the mapping projects. 

We began by identifying common and distinct mapping associations, emphasizing those that 
represented the cores of alliance concepts from NatureServe (2012). We used these as seeds for 
initializing map classes. If possible, we selected associations that were present at all NCCN parks in 
order to provide a common thread. If this was not possible, and we were confident about the 
relatedness of floristically dissimilar associations, we occasionally initialized map classes using a 
different association at each park. We did this in the case of vegetated balds, which are characterized 
by a common structure and setting but whose constituent species vary significantly with geography. 

We then used an agglomerative process to grow the map classes from their seeds.42 At each step, we 
computed the level of floristic and modeling similarity (termed joint similarity hereafter) between 
each unassigned association and each nascent map class, by aggregating plot-level data.43 We found 
the association–map class pair with the greatest pairwise joint similarity and joined them by 
assigning the association to that map class in the crosswalk. Association–map class similarities were 

 
41 We quantified model confusion as the out-of-bag error rate for a plot in a model attempting to discriminate 
between a pair of associations, built from the plots assigned to either of them. The R randomForest package (Liaw 
and Wiener 2002) provides this information as an optional ‘votes’ table output. See Sections 2.5–7 for background 
in the modeling process. 
42 The interactive process described here was implemented in a spreadsheet. 
43 We computed similarity by aggregating plot-level data at each step because some plot-level QC was ongoing 
during this process and this prevented our needing to run random forests again with every change.  
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recalculated after each assignment, and the next most similar pair found. The process resulted in 
maximizing within-class similarity and minimizing between-class similarity, allowing more 
confident discrimination in the field and more reliable mapping. 

Early in the process, assignments were easy because many associations clearly belonged together 
based on both floristics and modeling. The decisions became more difficult later. When we 
encountered associations whose floristic and modeling tendencies pointed to different map classes, 
we emphasized the floristics, unless some overriding structural or setting-based criterion was 
available to assist in field identification. When different patterns of similarity were observed at 
different parks, we made our decision based on the park where the majority of association plots 
occurred. Occasionally we went back to the plot data to unravel problems. 

Associations that fit poorly to existing map classes were added as new classes if they represented a 
distinguishable concept and had enough plots to support modeling. It then occasionally become 
apparent that other associations that had already been assigned had a stronger affinity for the new 
class. The iterative process continued until all associations had been assigned. 

Refining crosswalk 
After the crosswalk was formed, we recalculated association-wide model similarity to each full map 
class, again from plot-level data. We re-examined associations that were a better fit to a map class 
other than the class with which they had been lumped. We often found that this mismatch arose from 
plots that were floristically distinct from most others assigned to the association. These outliers 
usually were easily recoded on an individual basis to an alternate association, but in several cases we 
found associations that contained a full subset of plots that were similar to each other but distinct 
from the rest. We formed new associations with these plot subsets and moved them to a different 
map class. Nielsen and Brunner (2021) includes several examples of these new associations. 

In many cases, map class occurrences were confined to only one44 or two45 of the NCCN parks, 
which presented no challenge to the crosswalk since the constituent associations were also absent. 
However, occasionally a map class was present in a park, but with too few plots from which to 
construct a model of its distribution. In these cases, we lumped the constituent associations with the 

 
44 Examples included H63–ALPINE BUCKWHEAT PUMICE VEGETATION (at MORA only), C02–REDCEDAR, 
LABRADOR-TEA, SLOUGH SEDGE AND SPHAGNUM BOG (OLYM only), and C22–SUBALPINE LARCH WOODLAND (at 
NOCA only). 
45 Examples included C03–SITKA SPRUCE, WESTERN HEMLOCK AND WOOD SORREL FOREST (absent at NOCA), H57–
GREEN FESCUE DRY MEADOW (absent at OLYM), and H52–COW PARSNIP MEADOW (absent at MORA, at least at 
mappable patch size). 
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most similar map class that was mappable at that park.46 These are the only cases where the 
crosswalk between association and map class differs between parks. 

In general, the outcomes of the crosswalking process confirmed our belief that unless aberrant 
vegetation structure is present, modeling tendencies and full floristic character tend to track each 
other extremely well. By maximizing the floristic distinctions between the map classes, we 
simultaneously created a highly mappable classification. The description for each map class in 
Nielsen et al. (2021c) contains a list of its component associations. 

2.4.2. Development of other map classes 

Natural sparse and abiotic map classes 
Classification and mapping efforts were primarily focused on vegetated communities, but sparsely 
vegetated and abiotic areas occupy a large proportion of each NCCN park. To fill these areas of the 
map, we developed map classes that were simple for field crews to discriminate but would provide 
useful habitat context. We developed a “rock-dominated” set of map classes distinguished by the 
geomorphological origin of the mineral substrate, including R71–ALLUVIAL BARREN AND DEBRIS-
COVERED ICE, R72–COLLUVIAL BARREN and R73–BEDROCK BARREN. We also developed an “H2O-
dominated” set of classes composed of W81–FRESH WATER and W82–EXPOSED SNOW AND ICE.  

Disturbed and cultural map classes 
Several other classes were created to handle areas of uncertain vegetation impacted by recent fires or 
anthropogenic disturbance (the latter most often in the mapped buffer around the park). In this 
category were M92–BURNED WITH UNCERTAIN VEGETATION, M93–TIMBERLAND WITH UNCERTAIN 

VEGETATION, M94–DEVELOPMENT, M95–ROADS IN PARK and M96–CLEARED CORRIDORS IN PARK. 
Details on discriminating these and the preceding types are contained in the map class descriptions 
(Nielsen et al. 2021c). 

 
46 Examples included B33–UPLAND RED ALDER, BIGLEAF MAPLE AND CONIFER FOREST, treated as S45–VINE MAPLE 

SHRUBLAND at MORA, and H56–SUBALPINE SUMMER-DRY GRASS-FORB MEADOW, treated as H57–GREEN FESCUE 
DRY MEADOW at NOCA. 
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2.4.3. Resulting map classification 
The map classes present in the NOCA map are summarized in Table 3. See Nielsen et al. (2021c) for 
detailed map class descriptions and an explanation of the map class name coding system. 

Table 3. Map classes present in the NOCA map, the other NCCN park maps in which they appear, and 
the number of training plots called to each at NOCA. 

Map class code and full name Other parks Plot count 

C04–Moist western hemlock, Douglas-fir and foamflower forest MORA, OLYM 50 

C05–Western hemlock, Douglas-fir and sword fern forest MORA, OLYM 135 

C06–Western hemlock, Douglas-fir and salal forest MORA, OLYM 37 

C07–North Cascades dry Douglas-fir forest – 70 

C09–Ponderosa pine and Douglas-fir woodland – 61 

C10–Moist silver fir, western hemlock and foamflower forest MORA, OLYM 60 

C11–Mesic silver fir and western hemlock forest MORA, OLYM 96 

C12–Silver fir, hemlock and Alaska blueberry forest MORA, OLYM 29 

C13–Mountain hemlock, silver fir and Cascade azalea forest MORA, OLYM 105 

C14–Silver fir, big huckleberry and beargrass forest MORA, OLYM 11 

C15–Lodgepole pine and Douglas-fir woodland MORA, OLYM 78 

C16–North Cascades Douglas-fir and subalpine fir woodland – 62 

C20–Subalpine fir and Sitka valerian forest and woodland MORA, OLYM 87 

C21–Mountain hemlock, subalpine fir and heather woodland MORA, OLYM 91 

C22–Subalpine larch woodland – 68 

C25–North Cascades subalpine fir and whitebark pine woodland – 57 

C26–Conifer krummholz and treed cliff MORA, OLYM 79 

B30–Successional gravel bar shrubland MORA, OLYM 11 

B31–Broadleaf riparian and swamp forest MORA, OLYM 52 

B33–Upland red alder, bigleaf maple and conifer forest OLYM 26 

B34–Bigleaf maple and Douglas-fir debris apron forest – 36 

B35–Upland paper birch and conifer forest – 25 

S40W–Low elevation shrub-dominated wetland MORA, OLYM 30 

S41W–Subalpine willow wetland MORA, OLYM 14 

S42–Sitka willow riparian shrubland OLYM 13 

S43–Sitka alder shrubland MORA, OLYM 90 

S44–Thimbleberry shrubland, tall forbs and bracken fern OLYM 18 

S45–Vine maple shrubland MORA, OLYM 74 

S46–Snowbrush and Scouler's willow shrubland – 67 

S47–Successional huckleberry shrubland MORA, OLYM 64 

S48–Subalpine heather shrubland MORA, OLYM 78 

S49–Alpine heather shrubland MORA, OLYM 72 
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Table 3 (continued). Map classes present in the NOCA map, the other NCCN park maps in which they 
appear, and the number of training plots called to each at NOCA. 

Map class code and full name Other parks Plot count 

H50W–Lowland marsh and meadow MORA, OLYM 22 

H51W–Subalpine herbaceous wetland MORA, OLYM 26 

H52–Cow parsnip meadow OLYM 9 

H53–Showy sedge and Sitka valerian meadow MORA, OLYM 56 

H54–Moist talus vegetation OLYM 35 

H57–Green fescue dry meadow MORA 75 

H58–Bedrock balds and sparsely vegetated forest openings MORA, OLYM 64 

H60W–Black alpine sedge wetland MORA, OLYM 20 

H62–Alpine sparse herbaceous vegetation MORA, OLYM 38 

R71–Alluvial barren and debris-covered ice MORA, OLYM 66 

R72–Colluvial barren MORA, OLYM 247 

R73–Bedrock barren MORA, OLYM 126 

W81–Fresh water MORA, OLYM 139 

W82–Exposed snow and ice MORA, OLYM 33 

M92–Burned with uncertain vegetation MORA, OLYM – 

M93–Timberland with uncertain vegetation MORA, OLYM – 

M94–Development MORA, OLYM – 

M95–Roads in park MORA, OLYM – 

M96–Cleared corridors – – 

 

Development of the NVC for the Pacific Northwest continued on a somewhat parallel track to ours, 
as we worked on finalizing the mapping associations and map classes presented here. We compared 
the relationship of our mapping associations and map classes with the hierarchical placement of the 
related associations in the most recent NVC update, USNVC (2019). At the NVCS group level, there 
is good correspondence, with our map classes mostly composed of associations that are members of a 
single group, or of an amalgam of associations from groups that are poorly represented in the project 
area and do not overlap with other map classes. There is less congruence at the alliance level, with 
one cause being that our map classes are generally less beholden to dominance and encompass a 
broader range of indicator species. Forests are somewhat more finely delineated in map classes than 
the current NVC alliances, but non-forests are a bit more coarsely lumped. Structural characteristics 
appear to be more important in distinguishing forested map classes than the corresponding alliances, 
but less important in distinguishing dwarf shrubland and herbaceous map classes. 

2.4.4. Descriptions 

Summary and setting narratives 
The map class summary and setting paragraphs in Nielsen et al. (2021c) were compiled from plot-
level floristics, vegetation structure data, summarized environmental variables and expert knowledge. 
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We edited the narratives to reflect park-specific characteristics and added observations based on the 
final map and plot data. Representative plot photos were selected for each class; these were generally 
obtained from the park in which it was most common. 

Floristics tables 
We generated constancy and cover information for each of the resulting map classes, based on the 
complete set of full ocular plots across the three parks. Because of the large number of records that 
were uncertain at the species level, we used the SCM taxa described above (and documented in INR 
2021b) instead of species as the taxonomic units for the analysis. We used the tables generated to 
assign descriptive names to the map classes. Each map class description in Nielsen et al. (2021c) 
contains a condensed version of the constancy and cover results. 

Indicator species analysis 
Although we relied on the tools described above (SCM, pSCM and DIT) to reliably discriminate 
between map classes on the basis of plot floristics, those tools will not be available to users in the 
field, unless they are carrying a mobile device. Instead, we created a park-specific list of indicator 
species that are helpful for distinguishing each pair of map classes, which we have included in 
Nielsen et al. (2021c) for pairs that are likely to be occasionally confused. 

We derived indicators from the constancy and cover data. Presence indicators are SCM taxa that are 
significantly more likely to be present in one of the map classes than in the other, based on the 
constancy tables. We rated the strength of presence indicators by the constancy ratio between the two 
classes and put those ratings on a comparable scale for both sides of each map class pair. Cover 
indicators are taxa that are likely to occur in significantly greater abundance in one of the classes 
than in the other, based on the cover tables. We prioritized listing taxa that occur reasonably often in 
the favored map class, but in some cases only less common taxa are good indicators. For this reason, 
we listed a significant number of indicators. Lack of presence of an indicator is not evidence against 
a map class; however, absence of taxa listed as occurring at high frequency in the floristics table for a 
map class can be construed that way. 

2.4.5. Key 
We have mentioned several times the difficulties we encountered with field plots that had been 
assigned to association based on a dichotomous key (see Section 1.2.1 and elsewhere). However, 
although “the key is not the classification” (Crawford et al. 2009), it is where a typical user will start. 
In our map class key (Brunner et al. 2021), we aimed to provide as much help to a field user as 
possible without leading them astray by oversimplification. We strongly urge users who have keyed 
to a map class to carefully consult the map class description, including the indicators for closely-
related alternate classes. 

Much of the key was built using automated methods such as multivariate hierarchical clustering via 
hclust (R Core Team 2018) and classification trees via rpart (Therneau et al. 2015). Because setting 
and structural characteristics are easiest for a non-botanist to identify, we prioritized them in the key 
where possible, mostly at higher levels. At the lower levels (e.g., within conifer forests), the breaks 
were mostly determined by floristics. We transformed plot species composition information into 
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binary true/false characteristics based on presence, prominence, dominance of individual species and 
functional groups (e.g., broadleaf trees, total vascular cover), relative abundance (e.g., cover of Acer 
circinatum significantly greater than that of Alnus viridis), and quantifiable setting variables (e.g., 
south-facing). We used rpart to determine the optimal structure and best key break variables based 
on pools of samples drawn from the full-ocular plots, assuming these decisions would translate to 
new plots encountered in the field. 

To help keep users from taking a wrong turn based on a single criterion, we added additional floristic 
and setting-based characteristics at most breaks to lend additional confidence. The additional criteria 
were pulled from surrogate variables in the classification tree, from a break-specific indicator species 
analysis using the R indicspecies package (De Cáceres and Legendre 2009), and from setting and 
structure notes. After each break was written, it was applied to the current plot pool and the resulting 
subdivided pool was fed into the next break. We minimized misclassification by only including 
criteria that correctly classified 95% or more of the plot pool entering the break; we tried to find a 
way to shepherd the misclassified plots home later in the key. The key was validated in the office 
with over 200 field plots per park and was also briefly tested in the field. 

2.5. Independent data selection and pre-processing 
We used an implementation of the random forests machine learning algorithm (Breiman 2001) to 
predict map class from field training data (discussed in Sections 2.1–2.4) and wall-to-wall 
independent predictor data. We used several broad categories of predictor data: (a) four separate 
years of aerial imagery from the National Agricultural Imagery Program (NAIP); (b) satellite 
imagery from the Landsat-8 and Sentinel-2 satellites, collected during multiple distinct seasons; (c) 
topographic and hydrologic metrics developed from standard digital elevation models; and (d) 
climate normals over the period 1981–2010. Several other types of potential predictor data—soils, 
surface geology, and geological landform information, infrastructure development locations, and 
maps of fire history—were considered for use and ultimately rejected. These layers had poor spatial 
registration or were incomplete or inconsistent over the project area. We felt their use would result in 
mapping artifacts and add little predictive power, since correlated information was available already 
in the other predictors. Table 4 summarizes the data sources with their spatial resolutions and the 
dates to which they apply. The selection, acquisition and pre-processing of the data are described in 
the sections that follow. 
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Table 4. Sources of predictive modeling layers. 

Data type 
Spatial 
res (m) Data source 

Applicable 
timeframe(s) 

4-band color-infrared aerial imagery 1 National Agriculture Imagery 
Program, State of Washington 

2009, 2011, 
2013, 2015 

Historic mid-summer image, Landsat-5 30 USGS (2019a) Aug 23, 1985 

Current mid-summer image, Sentinel-2 10, 20 USGS (2019a) Aug 11, 2017 

Current minimum-snow image, Landsat-8 30 USGS (2019a) Sep 11, 2015 

Elevation 10 USGS (2019b) – 

Climate normals ~800 PRISM Climate Group (2019) 1981–2010 

 

All data required pre-processing to ensure consistent spatial registration and reduce sources of noise. 
The process of selecting and obtaining the various datasets and the end products of the pre-
processing are described here. 

2.5.1. Aerial imagery 
We acquired 4-band color infrared NAIP imagery as uncompressed quarter quads from four separate 
collections, in 2009, 2011, 2013, and 2015. The 2015 imagery was the main data source allowing 
mapping at 3-meter resolution. However, deep shadows which lowered mapping accuracy often 
occurred north of steep slopes (Figure 6). Because the shadow locations varied between image 
collections, we mitigated this problem by combining the best-illuminated portions of each into a 
mosaic. 
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Figure 6. Aerial imagery with untreated shadows. The deep shadows seen in this 2015 NAIP imagery 
would interfere with accurate mapping unless treated. 

Correction of 2015 imagery 
We mosaicked the uncompressed quarter quads from each NAIP collection and generated aerial 
imagery metrics (Section 2.6.1). Making use of topographic information (Section 2.6.3), we then 
built a predictive model to identify shadows in the 2015 imagery by digitizing shadow and non-
shadow training data, identifying shadows using a random forests model, and iteratively selecting 
additional training data to home in on problem areas. When satisfied with the results, we converted 
the shadow mask to a shapefile and buffered each feature by a variable distance, using a formula that 
yielded a buffer area roughly proportional to the size of the feature. Our hypothesis was that over a 
given region, the histogram of pixel values for each image band within corrected shadows should 
resemble that within the adjacent unshaded areas. We broke the project area into overlapping tiles, 
derived a crosswalk between shadow pixel values and corrected values based on matching the 
shadow and buffer histograms, and applied this to all shadow pixels. Figure 7 illustrates a resulting 
corrected image. 
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Figure 7. Aerial imagery with histogram-matched shadows. Here the shadowed areas have been 
matched to the surroundings. 

Image merging and correction 
Although shadow pixel values in the corrected 2015 image showed reasonable correspondence to the 
underlying land cover, lack of direct illumination resulted in a major reduction in local variance 
which could not be corrected. Because of the importance of high-resolution texture in accurate 
identification of land cover types (see Section 2.6.1), we incorporated an additional method of 
shadow treatment. We applied the model generated from 2015 imagery to the other imagery years, 
yielding shadow/non-shadow masks for each year. These masks were used to produce a merged 
image by selecting the first non-shadowed year from the sequence (2015, 2013, 2009, 2011) subject 
to the condition that if a given pixel was located within the digitized fire perimeters (Section 2.1.2), 
only imagery collected after the fire year could be selected. The year 2011 had lowest priority in the 
merge sequence because high snowpack that year obscured the ground and delayed vegetation 
development at high elevations through much of the summer. The merged image replaced many of 
the shadows in the 2015 image with illuminated data from other years. Although the spectral 
characteristics differed somewhat from year to year due to the lack of radiometric normalization in 
NAIP data, we felt that for modeling purposes the result was far superior to leaving the shadows 
untreated. The areas that were shadowed in all imagery years were corrected using the procedure 
applied to the 2015 imagery above. The resulting image, suitable for generating texture metrics 
(Section 2.6.1), is shown in Figure 8. 
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Figure 8. Aerial imagery merged across years. Here the shadowed areas have been filled with data from 
the 2009–13 images. Areas shadowed in all images were matched to the surroundings. 

2.5.2. Satellite imagery 
We searched the image archive at GLOVIS (USGS 2019a) for cloud-free Landsat-5, Landsat-8, and 
Sentinel-2 images collected between early June and late September in all years since 1982. Images 
from outside that seasonal window were mostly snow-covered or had very low sun angles and were 
not useful for vegetation mapping. In the map training fieldwork phase, a Landsat-5 image collected 
on July 16, 2006 was used to guide sampling and produce field map sheets. A midsummer Sentinel-2 
image collected on August 11, 2017 (Figure 9) was used as the primary satellite image for modeling. 
A Landsat-8 image collected on September 11, 2015 was also used in modeling, since it had the 
minimum snow cover of any available images, allowing more effective mapping of higher elevation 
areas. Finally, a Landsat-5 image collected on August 23, 1985 served as the starting point for 
historic change detection over the intervening time period. 
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Figure 9. Base Sentinel-2 satellite image, collected August 11, 2017. The intensity of shades of red 
represents near-infrared reflectance from the land surface, green intensity represents mid-infrared 
reflectance, and blue intensity represents red reflectance. 

All satellite images were converted to at-sensor reflectance (e.g., Chander et al. 2009), and a simple 
dark object atmospheric correction (Chavez 1988) was applied to approximate surface reflectance. 
We developed a novel process for spatial coregistration of the satellite images with the elevation 
dataset. We began by coregistering the minimum-snow image—which showed the greatest 
illumination contrast due to its acquisition at a time of relatively low sun elevation angle—to the 
elevation data. A cosine(i) image of illumination intensity at the time of image acquisition was 
created based on local slope and aspect; it served as a reference for aligning the satellite near-infrared 
band using the ERDAS Imagine Autosync tool. We then coregistered the midsummer image to the 
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minimum-snow image using their respective near-infrared bands. The resulting coregistered images 
were resampled via cubic convolution to a common extent and pixel size. 

The satellite images were then topographically normalized to reduce the effect of variable 
illumination on at-sensor reflectance. We did this via a modified version of the stratified c-correction 
method (Twele et al. 2006), using the normalized difference moisture index (NDMI; Wilson and 
Sader 2002) for stratification of pixels into distinct correction groups. The normalization process 
reduced the effects of shading, causing individual land cover types to exhibit more consistent 
reflectance across the image, regardless of slope and aspect (Figure 10). 
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Figure 10. Sentinel-2 image before and after topographic normalization (upper and lower images 
respectively). Snow and ice appear pink, sparsely vegetated areas green, broadleaved trees and shrubs 
yellow, and conifers reddish-brown. 
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2.5.3. Elevation and climate data 
We downloaded 10-meter resolution elevation data for the project area from the 3D Elevation 
Program (3DEP; USGS 2019b). We also downloaded a range of 30-year monthly climate normals at 
approximately 800-meter resolution from the PRISM Climate Group (2019), including January, April 
(see Figure 11), July and October precipitation, minimum and maximum temperature, mean dew 
point temperature, and maximum vapor pressure deficit. For processing efficiency, the elevation data 
were converted to integer format using a vertical unit of 0.25 feet. The climate data were clipped to 
the project area, reprojected and resampled to 30-meter resolution using bilinear interpolation. 

 
Figure 11. Average April precipitation from PRISM data, illustrating the strong gradient across the 
complex. Blue represents the wettest areas (about 30 cm of rain-equivalent precipitation) and burnt 
orange the driest (about 3 cm). 
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2.6. Predictive metrics 
We used spatial contextual information, variable transformations, and noise minimization techniques 
to produce predictive metrics with stronger relationships to vegetation patterns than the raw 
independent data. The metrics fall into five main categories: metrics derived from aerial imagery, 
satellite imagery, topographic information, hydrologic information, and climate data. Each metric 
category is followed by a table detailing the predictive metrics produced from that data source. For 
each metric, we give an effective resolution. This combines characteristics of the data source as well 
as algorithmic factors to estimate the square dimensions surrounding any point over which land cover 
will influence the metric. It is used later in the predictor selection process to simultaneously optimize 
model error rate and effective spatial resolution (see Section 2.7.4). 

2.6.1. Aerial imagery metrics 
A variety of metrics representing spectral response and spatial patterning were calculated from the 
aerial imagery (Table 5). Two main types of metrics were produced. Reflectance metrics, produced 
from the shadow-corrected 2015 image, are based on responses in different spectral bands from a 
single imaged pixel. Texture metrics, produced from the shadow-corrected multi-year merged image, 
are based on local variability in spectral responses, measured across a moving window incorporating 
numerous pixels. The processing is described in greater detail below. 

Table 5. Aerial imagery-based predictive metrics, the effective spatial resolution at which they respond, 
and a brief description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

r1_md, r1_mx 3 Median and maximum red band value over source pixels 

g1_md, g1_mx 3 Median and maximum green band value over source pixels 

n1_md, n1_mx 3 Median and maximum near-IR band value over source pixels 

u1_md, u1_mx 3 Median and maximum near-IR:green band contrast over source pixels 

v1_md, v1_mx 3 Median and maximum near-IR:red band contrast (NDVI, Rouse et al. 1974, 
Tucker and Sellers 1986) over source pixels 

w1_md, w1_mx 3 Median and maximum red:green band contrast over source pixels 

x1_md, x1_mx 3 Median and maximum green:blue band contrast over source pixels 

y1_md, y1_mx 3 Median and maximum red:blue band contrast over source pixels 

r1a, r1b, r1c 3 Texture metric via filter ‘a’, ‘b’, ‘c’ at 1m resolution on red band 

r2a, r2b, r2c 6 Texture metric via filter ‘a’, ‘b’, ‘c’ at 2m resolution on red band 

r3a, r3b, r3c 9 Texture metric via filter ‘a’, ‘b’, ‘c’ at 3m resolution on red band 

r4a, r4b, r4c 12 Texture metric via filter ‘a’, ‘b’, ‘c’ at 4m resolution on red band 

r6a, r6b, r6c 18 Texture metric via filter ‘a’, ‘b’, ‘c’ at 6m resolution on red band 

r9a, r9b, r9c 27 Texture metric via filter ‘a’, ‘b’, ‘c’ at 9m resolution on red band 

rca, rcb, rcc 36 Texture metric via filter ‘a’, ‘b’, ‘c’ at 12m resolution on red band 

rda, rdb, rdc 54 Texture metric via filter ‘a’, ‘b’, ‘c’ at 18m resolution on red band 

rea, reb, rec 81 Texture metric via filter ‘a’, ‘b’, ‘c’ at 27m resolution on red band 
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Table 5 (continued). Aerial imagery-based predictive metrics, the effective spatial resolution at which 
they respond, and a brief description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

rfa, rfb, rfc 108 Texture metric via filter ‘a’, ‘b’, ‘c’ at 36m resolution on red band 

gRF, nRF, uRF, vRF, wRF 3–108 
All the above combinations of resolution (R) and convolution filter (F) applied 
to green band, near-infrared band, near-IR:green contrast, near-IR:red 
contrast, and green:red contrast 

ra_13, rb_13, rc_13 3 NDTI of r1a contrasted with r3a, r1b with r3b, and r1c with r3c 

ra_26, rb_26, rc_26 6 NDTI of r2a contrasted with r6a, r2b with r6b, and r2c with r6c 

ra_39, rb_39, rc_39 9 NDTI of r3a contrasted with r9a, r3b with r9b, and r3c with r9c 

ra_4c, rb_4c, rc_4c 12 NDTI of r4a contrasted with rca, r4b with rcb, and r4c with rcc 

ra_6d, rb_6d, rc_6d 18 NDTI of r6a contrasted with rda, r6b with rdb, and r6c with rdc 

ra_9e, rb_9e, rc_9e 27 NDTI of r9a contrasted with rea, r9b with reb, and r9c with rec 

ra_cf, rb_cf, rc_cf 36 NDTI of rca contrasted with rfa, rcb with rfb, and rcc with rfc 

gF_RS, nF_RS, uF_RS, 
vF_RS, wF_RS 3–36 

All the above combinations of convolution filter (F) and two resolutions (R,S) 
applied to green band, near-infrared band, near-IR:green contrast, near-
IR:red contrast, and green:red contrast 

d1c, d2c, d3c, d4c, d6c, 
d9c, dcc, ddc, dec, dfc 3–108 Cross-band contrast between v1c & r1c, v2c & r2c, v3c & r3c, v4c & r4c, v6c & r6c, 

v9c & r9c, vcc & rcc, vdc & rdc, vec & rec, vfc & rfc 

e1c, e2c, e3c, e4c, e6c, 
e9c, ecc, edc, eec, efc 3–108 Cross-band contrast between n1c & r1c, n2c & r2c, n3c & r3c, n4c & r4c, n6c & r6c, 

n9c & r9c, ncc & rcc, ndc & rdc, nec & rec, nfc & rfc 

 

Spectral metrics 
Response metrics were produced for the red, green and near-infrared bands of the 1-meter resolution 
imagery. In addition, several vegetation indices were calculated from the raw band values: the 
normalized difference vegetation index (NDVI; Rouse et al. 1974, Tucker and Sellers 1986) and 
parallel contrast metrics between the near-infrared and green bands, and between the green and red 
bands. Each metric was summarized to the 3-meter mapping resolution by taking the median and the 
maximum 1-meter value within each 3-meter modeling pixel. 

Nested texture metrics 
Most information in high-resolution imagery is contextual and expressed in the spatial patterning of 
pixel neighborhoods; the eye’s ability to identify many features based solely on the patterning and 
arrangement of gray-scale brightness values illustrates this point. We devised a method called nested 
texture metrics (NTM) to extract this information and provide it as predictor data to the modeling 
process. The texture metrics represent local variability at a range of pixel resolutions corresponding 
to distinct spatial scales at which various vegetation and landscape features occur. 
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Each of the spectral metrics described above was first median-aggregated47 to a variety of coarser 
resolutions (2, 3, 4, 6, 9, 12, 18, 27, and 36 meters). We then used three different 3x3-cell48 
convolution filters to extract different aspects of patterning from each of the aggregated datasets as 
well as the original 1-meter dataset: (a) standard deviation of the center cell and the eight nearest 
neighbor (8NN) cells; (b) a ‘speckle’ filter, the absolute value difference between the center cell and 
the median of the 8NN, divided by the median of the 8NN and then smoothed by an additional 3x3-
cell median filter; and (c) a non-trending variance filter accomplished via an alternating-cell 

convolution kernel �
+4 −5 +4
−5 +4 −5
+4 −5 +4

�. The results were converted to 3-meter resolution by a 

combination of median aggregation and cubic convolution resampling designed to maintain high-
resolution detail. 

Normalized difference texture index 
We developed the normalized difference texture index (NDTI) to minimize the impact of variability 
in view angle and illumination characteristics between flight lines. The index works on the principle 
that because these artifacts affect textures similarly across a range of pixel resolutions, they can be 
partially canceled out by contrasting textures computed at two different pixel resolutions. Texture 
differences remaining after this cancellation result from image patterns at spatial scales intermediate 
between the two resolutions. NDTI metrics were produced by contrasting metrics computed at the 
following pairs of resolutions: 1m/3m, 2m/6m, 3m/9m, 4m/12m, 6m/18m, 9m/27m, and 12m/36m. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎 =
(𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑏𝑏)
(𝜎𝜎𝑎𝑎 + 𝜎𝜎𝑏𝑏) 

where a and b represent the two source texture resolutions and σ represents the source texture metric 
computed at the given resolution. 

Cross-band contrast metrics 
We produced another set of metrics to contrast corresponding metrics computed on NDVI against the 
red band, and on the near-infrared band against the red band. A formula like that used for NDTI was 
used, based only on the results from the ‘c’ convolution filter. 

2.6.2. Satellite imagery metrics 
We calculated a variety of image transformations from the satellite imagery (Table 6). The metrics 
differed somewhat depending on whether the source imagery was obtained by Sentinel-2, Landsat-8 
or Landsat-5. All applicable metrics were produced for the current midsummer and minimum-snow 

 
47 GIS data is typically aggregated to a coarser resolution by taking the mean value of the finer resolution input 
pixels across each of the output pixels. Summarizing by the median value instead reduces smoothing near land cover 
transitions and increases the isolation of scale-dependent texture signals. 
48 The term cell is generally synonymous with pixel, but we mean it in a more abstract sense—generally in the 
context of a data-processing algorithm—than we do pixel, which is usually associated with the local contribution to 
some larger “picture.” 
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images and for the historic midsummer image, but only those from current images were used in 
modeling. 

Table 6. Satellite imagery-based predictive metrics, the effective spatial resolution at which they respond, 
and a brief description or methodology reference.A Where two resolutions are shown, the first is for 
Sentinel imagery, the second for Landsat. 

Metric name(s) 
Effective 

res (m) Description 

grn 10, 30 Green reflectance: 543–577 nm (Sentinel-2), 530–590 nm (Landsat-8) or 520–600 
nm (Landsat-5) 

red 10, 30 Red reflectance: 650–680 nm (Sentinel-2), 640–670 nm (Landsat-8) or 630–690 
nm (Landsat-5) 

re1 20 Red edge reflectance: 698–712 nm (Sentinel-2 only) 

re2 20 Red edge reflectance: 733–747 nm (Sentinel-2 only) 

re3 20 Red edge reflectance: 773–793 nm (Sentinel-2 only) 

nir 10, 30 Near-infrared reflectance: 785–899 nm (Sentinel-2), 850–880 nm (Landsat-8) or 
760–900 nm (Landsat-5) 

sw1 20, 30 Shortwave reflectance: 1565–1655 nm (Sentinel-2), 1570–1650 nm (Landsat-8) or 
1550–1750 nm (Landsat-5) 

sw2 20, 30 Shortwave reflectance: 2100–2280 nm (Sentinel-2), 2110–2290 nm (Landsat-8) or 
2080–2350 nm (Landsat-5) 

temp 100 Thermal band response: 10.60–11.19 µm (Landsat-8 only) 

ndvi, ndvip 10, 30 Normalized difference vegetation index (Tucker and Sellers 1986) 

ndmi, ndmip 20, 30 Normalized difference moisture index (Wilson and Sader 2002) 

ndfi, ndfip 20, 30 Normalized difference forest index = ndvi + ndmi 

nbr, nbrp 20, 30 Normalized burn ratio (Key and Benson) 2002 

ndsi, ndsip 20, 30 Normalized difference snow index (Hall et al. 1995) 

ndgr, ndgrp 10, 30 Normalized contrast between grn and red 

ndng, ndngp 10, 30 Normalized contrast between nir and grn 

ndsw, ndswp 20, 30 Normalized contrast between sw1 and sw2 

tcb 20, 30 Tasseled cap brightness (Kauth and Thomas 1986, Huang et al. 2002) 

tcg 20, 30 Tasseled cap greenness (Kauth and Thomas 1986, Huang et al. 2002) 

tcw 20, 30 Tasseled cap wetness (Kauth and Thomas 1986, Huang et al. 2002) 

di 20, 30 Disturbance index (Healey et al. 2005) 

ndre, ndrep 20 Normalized difference red edge index (Barnes et al. 2000, Sentinel-2 only) 

ccci 20 Canopy chlorophyll content index (Barnes et al. 2000, Sentinel-2 only) 

mcari 20 Modified chlorophyll absorption ratio index (Daughtry et al. 2000, Sentinel-2 only) 

resav 20 Red edge soil-adjusted vegetation index (Cao et al. 2013, Sentinel-2 only) 
A The indices ending in ‘p’ were developed during this work. They were calculated by adding 2 to the 

denominator of the standard formula for the metric, to compensate for index overestimation on dark surfaces 
such as water and deep shadow. 
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2.6.3. Topographic metrics 
A variety of metrics describing the influence of local topography on vegetation composition were 
calculated from the 10-meter resolution 3DEP data (Table 7). The more complex novel metrics 
created during this project are briefly described here. 

Table 7. Topographic predictive metrics, the effective spatial resolution at which they respond, and a brief 
description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

elev 10 Bare earth elevation. 

slope 10 Slope in degrees (Esri 2013). 

east, south 10 “Eastiness” = sin(aspect) and “southiness” = sin(aspect-90°). 

cur30, cur150, 
cur750 30, 150, 750 3x3-cell total curvature (Esri 2013) from elevation aggregated to 30m, 150m 

and 750m resolution. 

cpl30, cpl150, cpl750 30, 150, 750 3x3-cell planimetric curvature (Esri 2013) from elevation aggregated to 30m, 
150m, and 750m resolution. 

cpr30, cpr150, 
cpr750 30, 150, 750 3x3-cell profile curvature (Esri 2013) from elevation aggregated to 30m, 150m 

and 750m resolution. 

heat 10 Relative heat load (McCune and Keon 2002). 

raddir, raddur 30 Direct solar radiation and duration of direct illumination across full year (Esri 
2013); distinct from heat load in that cast topographic shadows are modeled. 

topodry 30 Elevation-scaled heat index = raddir * (1 – (elev / highest elev in WA)). 

mp630, mp3150 30, 150 Morphometric protection (SAGA-GIS, Conrad et al. 2015) from elevation 
aggregated to 30m over 630m radius, and to 150m over 3150m radius. 

tpp300, tpp1500, 
tpp7500 30, 150, 750 Topographic position percentile, the percentile rank of cell elevation relative to 

surrounding elevations within a 300m, 1500m and 7500m radius. 

tpmi300, tpmi1500, 
tpmi7500 30, 150, 750 Minimum elevation differential within 300m, 1500m and 7500m. See text for 

methodology. 

tpma300, tpma1500, 
tpma7500 30, 150, 750 Maximum elevation differential within 300m, 1500m and 7500m. See text for 

methodology. 

cold300, cold1500, 
cold7500 30, 150, 750 Cold air accumulation calculated over surrounding 300m, 1500m and 7500m. 

See text for methodology. 

rough30, rough90, 
rough270 10, 30, 90 Surface roughness at 30m, 90m and 270m scales. See text for methodology. 

 

Minimum and maximum elevation differentials 
We devised two multi-resolution metrics to quantitatively represent landform position. Four bisecting 
lines of length 21 times the cell resolution were constructed for each cell, oriented in the N-S, NE-
SW, E-W, and SE-NW directions. The mean elevation along each line was determined, and 
differences between the central cell’s elevation and each of the four means were calculated. The 
minimum of these four differences (minimum elevation differential or tpmi) and the maximum 
(maximum elevation differential or tpma) are relevant with respect to landform position. For example, 
a peak would have high values of both tpma and tpmi, while a level ridgeline would have a high tpma 
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and a tpmi near zero. A gap in a ridgeline would have a high tpma and a fairly large negative tpmi. The 
metrics were calculated at a variety of cell sizes to represent terrain morphology at a variety of spatial 
scales. 

Cold air accumulation 
Cold air accumulation in basins is a major driver of vegetation patterns in mountainous terrain. We 
developed an original approach for simulating this process, using the four elevation differentials 
created above. Locations at which the sum of the elevation differentials across perpendicular axes is 
a negative number have some tendency to accumulate cold air draining from above. The greater the 
magnitude of this negative number, the greater will be the tendency for cold air to enter from above 
and become trapped, and the colder that air is likely to be. 

For the four elevation differentials edNS, edEW, edNESW and edSENW we found the minimum sum of each 
of the perpendicular pairs: 

𝑒𝑒𝑒𝑒⟂,𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝑒𝑒𝑒𝑒𝑁𝑁𝑁𝑁 + 𝑒𝑒𝑒𝑒𝐸𝐸𝐸𝐸  ,  𝑒𝑒𝑒𝑒𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

By analogy with the compound topographic index (Moore 1991)—a hydrologic metric that similarly 
integrates the influence of a size-varying contribution area with the local tendency to disperse that 
input—we represented cold air accumulation at a cell using: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ln �
𝑒𝑒𝑒𝑒⟂,𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠 � 

where s is the slope in the downward direction from the cell at the same spatial scale over which the 
elevation differentials were calculated. Cold air accumulation was determined at each of the cell sizes 
for which elevation differentials were produced. 

Surface roughness 
We defined surface roughness as local variability in aspect that is non-trending across an analysis 
window, scaled up by the local slope. The non-trending criterion is important—for example, a 
window centered on a north-south oriented ridgeline would show a strong change in aspect from 
west-facing to east-facing, but this would not indicate surface roughness. To accomplish this, we 

again used the alternating-cell convolution kernel �
+4 −5 +4
−5 +4 −5
+4 −5 +4

�, this time applied to four 

transformations of aspect: sin(𝑎𝑎𝑎𝑎𝑎𝑎), sin(𝑎𝑎𝑎𝑎𝑎𝑎 − 45°), sin(𝑎𝑎𝑎𝑎𝑎𝑎 − 90°) and sin(𝑎𝑎𝑎𝑎𝑎𝑎 − 135°), 
summed these four directional measures of aspect variability, and multiplied by the mean slope 
across the analysis window. Roughness was computed at a range of spatial scales. 

2.6.4. Hydrologic metrics 
The hydrologic metrics were derived from processing within a landscape context rather than from a 
simple pixel-based perspective, since they depend on upstream areas in addition to the immediate 
surroundings. We first created a hydrologic flow accumulation layer based on the bare earth 
elevation, correcting for poorly modeled flow due to lack of information on road culvert locations. 
We used the flow accumulation layer to create a channel network, calibrating it using an NPS 
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streams data layer. The channel network was used as an input to a variety of distance metrics 
describing proximity to channels exceeding various flow thresholds. The predictive hydrologic 
metrics are shown in Table 8. 

Table 8. Hydrologic predictive metrics, the effective spatial resolution at which they respond, and a brief 
description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

vd_perm, vd_major 10 Vertical distance above permanent channel and major river networks (Conrad et 
al. 2015) 

hd_perm, hd_major 10 Horizontal distance to permanent channel and major river networks 

dtw 10 Cartographic depth to water index (White et al. 2012) 

wetness 10 SAGA wetness index (Conrad et al. 2015), closely related to Compound 
Topographic Index (Moore 1991) 

upland 10 Log-scaled cost distance to channel network, see text 

 

Flow accumulation and channel networks 
Hydrologic flow accumulation is a spatial representation of the catchment area contributing to flow at 
each gridded location in a drainage network. Its computation was important both as a step in the 
channel delineation process and also as a key input needed to generate several predictive metrics. 
The flow accumulation algorithm in SAGA-GIS (Conrad et al. 2015), when used to delineate channel 
networks, produced anastomosing effects in flat areas and appeared to realistically represent 
hydrologic processes for incorporation into predictive metrics. 

Hydrologic modeling was performed at 10-meter resolution. In order to represent the impact of 
spatial precipitation patterns on channel development, we created a weighted grid by rescaling 
PRISM annual precipitation to a fraction of the maximum value in the study area. We then filled 
sinks in the elevation grid, using the Wang & Liu (2006) method with minslope = 0.01, and modeled 
flow accumulation based on the weighted precipitation grid, using SAGA’s Catchment Area (Top-
Down) method with multiple flow directions and convergence = 1.1. 

We used the flow accumulation results to delineate channel networks, also in SAGA-GIS. Two 
alternate channel networks were created from the flow accumulation result. One was calibrated to 
represent all permanent channels, the other to represent only unconstrained rivers in major valleys. 
Various minimum thresholds of flow necessary to result in a channel were tested; the resulting 
networks were visually compared to stream representations in USGS 1:24,000 quad sheets. The best 
match to the represented permanent streams was found using a flow accumulation threshold of 
20,000, corresponding to an average catchment area of approximately 200 hectares. A threshold of 
8,000,000 (corresponding to about 80,000 ha) was used for major rivers; this resulted in delineation 
of channels downstream of the approximate location where their floodplains begin to widen 
substantially. 
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Riparian influence and metrics generation 
We devised a metric to express the degree of floristic riparian influence at any location. The first step 
was to determine the total flow quantity associated with each section of the channel network. The 
channel network was broken into discrete channel reaches defined by network intersections. Many 
channel segments were composed of anastomosing flow pathways, in which flow was modeled in 
several adjacent parallel paths; it was therefore necessary to consider the several paths as all 
contributing to a single total flow value. We accomplished this by associating each flow 
accumulation cell with the nearest delineated reach49 and averaging across reach length. 

We classified channel reaches into five categories based on average reach flow, with thresholds 
between the categories spaced in a regular geometric progression ranging from the minimum to the 
maximum channel reach flow in the study area. We then created a cost function to describe the 
degree of riparian influence in the perpendicular direction away from the channel. The cost function 
was proportional to the square of slope, which emphasized slope breaks and was able to represent 
physiographic features such as fluvial terraces and natural levees. We calculated the least cost 
distance from each cell to each of the five channel size categories using this function. 

The riparian influence metric was fit to its practical impact on species composition by examining the 
cost function values at the locations of training plots assigned to riparian vs. non-riparian 
associations. This resulted in an estimate of a cost function cutoff for each of the five flow categories 
that most accurately separated the plots with riparian floristics from those with upland floristics. A 
logarithmic relationship was found to best fit the relationship between the five cost function cutoffs 
and the mean flow quantity across all reaches in each of the five flow categories. We then iteratively 
modified the initial cutoffs until they exactly fit the logarithmic model. For each of the flow 
categories, we assumed that no further floristic riparian influence would be exerted beyond the cost 
distance cutoff. Finally, an “uplandness” index was created using: 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = log10 �1 + min �
𝐶𝐶𝐴𝐴
𝑇𝑇𝐴𝐴

,
𝐶𝐶𝐵𝐵
𝑇𝑇𝐵𝐵

,
𝐶𝐶𝐶𝐶
𝑇𝑇𝐶𝐶

,
𝐶𝐶𝐷𝐷
𝑇𝑇𝐷𝐷

,
𝐶𝐶𝐸𝐸
𝑇𝑇𝐸𝐸
�� 

where CA..E represent the slope-based cost distances to each of the five flow categories and TA..E 
represent the cost cutoffs used to define the extent of riparian influence for each category. 

2.6.5. Climate metrics  
The climate data required no additional processing to form predictive metrics. The predictors (Table 
9) were simply the 1981–2010 normals provided by the PRISM Climate Group (2019). 

 
49 “Distance” to the reach was evaluated via a cumulative slope cost function. 
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Table 9. Climate predictive metrics, the effective spatial resolution at which they respond, and a brief 
description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

ppt_jan, ppt_apr, ppt_jul, ppt_oct ~800 Average precipitation for month. 

tmax_jan, tmax_apr, tmax_jul, tmax_oct ~800 Average daily maximum temperature for month. 

tmin_jan, tmin_apr, tmin_jul, tmin_oct ~800 Average daily minimum temperature for month. 

tdew_jan, tdew_apr, tdew_jul, tdew_oct ~800 Average daily mean dew point temperature for month. 

vmax_jan, vmax_apr, vmax_jul, vmax_oct ~800 Average daily maximum vapor pressure deficit for month. 

 

2.7. Modeling 
We used a machine learning algorithm, random forests (RF; Breiman 2001, Liaw and Wiener 2002), 
to build models for predicting map class presence using the quality-controlled training plots resulting 
from the work in Section 2.3. We used RF because of its tendency to avoid overfitting to training 
data and its ability to isolate signals in noisy datasets (Cutler et al. 2007). The large number of map 
classes, with widely varying quantities of available training data, presented a modeling challenge: 
how to simultaneously produce models that are good at both “easy” prediction tasks (e.g., 
discriminating between low and high elevation types) and “hard” tasks (e.g., discriminating between 
two tall shrubland types occurring in similar settings), while avoiding bias against the rarest classes 
and also making maximum use of all available training data. To address this, we wrapped the RF 
algorithm in a factorial binary process in which each map class was modeled against every other. 
This allowed each model to specialize in distinguishing a single pair of map classes, choosing 
appropriate predictors for that task. During the prediction phase each class “competed” with each 
other class; the class with the lowest cumulative loss margin across all contests at a pixel was 
considered the best answer there. The predictor selection, model creation, and model prediction 
phases discussed below all ran on binary models. 

2.7.1. Model predictor data 
All the metrics discussed in Section 2.6 were resampled to a fixed 3-meter resolution grid over the 
coincident extent of all metrics. The resampling method used depended on the data source. We used 
nearest neighbor resampling to maintain the finest resolution possible for all metrics derived from 
NAIP; the predictor sampling grid was taken from these rasters to prevent any spatial shifting. 
Satellite imagery was resampled using cubic convolution, which results in less smoothing than 
bilinear interpolation and maintains crisper boundaries. The non-imagery layers were resampled 
using bilinear interpolation. 

2.7.2. Model training data 
Following the quality control process, the training plots represented relatively continuous patches of 
the assigned map class, spanning the full area defined by the plot center location and radius. Any 
patches of alternate types within the plot were assumed to be less than nine meters on a side. Training 
data were created from the predictor metrics by extracting the 3-meter pixel values at 13 points 
distributed across each training circle, with the most distant four points lying on the circumference 
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(Figure 12).50 The primary reason for extracting data from multiple locations at each plot was the 
necessity of training models at the same spatial scale at which they were predicted.51 In addition, this 
scheme allowed better representation of the range of predictor variation within each plot, including 
providing training data near transitions to adjacent vegetation types. The assigned association and 
map class calls and the extracted predictor values were then imported into R using functions provided 
by the rgdal package (Bivand et al. 2014). The training data represented 48 distinct map class calls; 
flowing water and impounded water were modeled separately but were later merged into the single 
map class W81–FRESH WATER, and B31–BROADLEAF RIPARIAN & SWAMP FOREST was modeled as 
distinct east- and west-side variants before merging. 

 
50 Because the 13 component samples from each plot are not statistically independent, we used only one of the 13 in 
any given random forests tree during the predictor selection and model creation steps. This avoided introducing 
pseudo-replication of training data and preserved the independence of the out-of-bag samples, while making use of 
the predictor variability within each plot. 
51 A commonly used alternative, summarizing predictor data over the plot area, would have introduced artificial 
smoothing into the training data that would not be applicable for predicting onto finer resolution pixels. 
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Figure 12. Training data extraction. Predictors were extracted from the 3-meter resolution metrics at 13 
points distributed across each training circle. The vegetation patch represented was assigned to H53–
SHOWY SEDGE AND SITKA VALERIAN MEADOW; the imagery is color-infrared 2015 NAIP at 1-meter resolution. 

2.7.3. Model binarization 
Each two-class combination of the 48 modeled map classes was treated separately, resulting in 1,128 
distinct binary models.52 This allowed each model to specialize in a single task—distinguishing two 
classes from one another—and gave us the freedom to treat issues of predictor collinearity more 
sensitively. For example, over the geography defined by all training samples in NOCA, there is a 
very strong negative correlation between elevation and maximum January temperature. But within 
the environmental subspace defined by the training plots assigned to C05–WESTERN HEMLOCK, 
DOUGLAS-FIR AND SWORD FERN FOREST and C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL 

FOREST, those variables are only weakly correlated, with maximum January temperature being a very 
strong predictor and elevation comparatively weak. Using both in a model based on training data 
throughout NOCA would violate standards against excessively correlated predictors. But there is no 

 
52 We handled the computationally intensive process of predictor selection, model creation and model prediction at 
3-meter resolution using three standard desktop computers, each running between three and five instances of R or 
Python simultaneously. They were connected to a network-attached storage device that hosted the training data, 
predictor data, and a shared status file that allowed the processes to distribute the tasks amongst themselves. 
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such violation for the single model C05 versus C06 and to exclude either predictor on this basis 
would unnecessarily reduce the model accuracy. 

2.7.4. Predictor selection 
We developed a novel predictor selection method to use with our multi-resolution predictor datasets, 
which reduced predictor collinearity53 while also optimizing model accuracy, model effective spatial 
resolution, and the efficiency of the prediction process. 

Initial selection 
We used a stepwise variable selection process coded in R, which was based on maximizing RF cross-
validated model accuracy at each step.54 We organized the predictors into ten tiers based on the 
effective spatial resolution at which they were calculated,55 with the finest scale predictors—the 3-
meter resolution NAIP band responses—in the first tier. 

At each tier, the process cycled through all available predictors, building 100 forests of 501 trees 
each, with each forest built from a single randomly selected point of the 13 for each plot. For each of 
the two map classes in the model, the out-of-bag error rate56 for each plot, ep, was compiled over 
each of the forests and converted to an estimate of the probability of plot misclassification by a single 
forest.57 This probability estimate was then averaged across all plots to produce an overall error rate 
estimate for the model including the newly introduced predictor.58 The predictor in the tier that 
resulted in the greatest decrease in model error rate was selected; any predictors (in that tier or 
others) with an absolute-valued Spearman rank correlation of 0.8 or greater to the selected predictor 
were eliminated from further consideration. If no predictors within the tier resulted in a decrease in 

 
53 Inclusion of substantially correlated predictors causes RF to overfit to those predictors, which is a major concern 
because our training data were gathered from such a small fraction of the project area. 
54 We considered using a process guided by an importance measure returned by RF, as in Evans and Cushman 
(2009). However, we found that a predictor’s contribution to model accuracy is strongly dependent on which other 
predictors are included, and that an importance measure returned from a model based on all predictors was not 
indicative of its potential utility in a model based on a small subset. 
55 However, despite the availability of high-resolution topography from lidar across much of the park, we considered 
topographic and hydrologic predictors together with mid-resolution satellite imagery—after Sentinel imagery but 
before Landsat—to keep the emphasis on existing conditions as opposed to environmental setting. 
56 RF generates this by testing each tree of the model against the samples that were withheld from creating it. 
57 The expected misclassification by a single forest was of interest because the map was made based on a single 
forest. This step assumed normal distribution of ep across forests. 
58 The model error rate here is defined as the higher error rate of the two modeled classes. By optimizing this 
quantity, rather than the overall (average) model error rate, we kept the error rate of the two classes balanced, which 
was an important assumption made by our prediction method. 
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model error rate, consideration moved to the following tier. After a predictor was selected, 
consideration always moved to the first tier again.59 

Climate variables can act as proxies for geographic location, as they are generally arranged along 
broad spatial gradients. Their use as predictors can present a severe risk of overfitting to training data 
whose collection has been determined more by convenience than by a random sample. Because our 
climate predictors were derived from approximately 800-meter resolution data, they were in the final 
selection tier. We additionally limited models to only one climate predictor, to reduce the likelihood 
of overfitting to our often spatially constricted training data. 

Often there was an inherent tradeoff between accuracy and spatial resolution. If satellite imagery or 
coarser scale texture metrics provide key information that is lacking in finer scale data, their use will 
increase accuracy but will also coarsen the model’s resolution (Figure 13). 

 
Figure 13. Average predictor resolution vs. median relative model error (the error increase attributable to 
leaving out coarser predictors). Predictors finer than 10-m resolution were treated as 10 m here; greater 
averages indicate increasing incorporation of coarser predictors in the model. The data were derived from 
only models with final error of 1% or greater, with a median final error of 3.7%; this would have been 8.5% 
using only predictors of 10-m or finer resolution. The best fit line is from a loess smoothing function. 

 
59 Because a predictor’s value may not be recognized until a compatible predictor has been included. 
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Predictor switching 
As seen in Figure 13, there is an optimal resolution at which to produce a model, which takes 
advantage of some of the predictive power of coarser resolution predictors, while maintaining 
responsiveness to fine scale vegetation transitions.60 The predictor selection routine described above 
simply tried to minimize model error, but some of this may come at the unnecessary expense of 
coarser resolution. To address the tradeoff between the two, we created a new metric errxres that 
combined both model error and average predictor resolution: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒𝑒𝑒𝑒𝑒 + 1%) 

where err is the model error (in percent) and avgres is the average predictor resolution. Starting with 
the predictors selected in the previous phase, we used another R script to drop the last selected 
predictors until the value of errxres was minimized. We then tested each of the remaining predictors, 
finding the model error rate that resulted from substituting any highly correlated predictors for them. 
Any substitutions that resulted in lowering errxres were accepted. The resulting predictor list was 
saved as an alternative set. 

Choosing best set 
To choose between the two sets of predictors produced, we used different decision-making criteria 
depending on whether we wanted to prioritize error rate or mapping resolution for the model. If the 
two map classes in the model were both larger patch size types (e.g., most conifer-dominated map 
classes), or if their environmental envelopes were so distinct that they wouldn’t be found in close 
proximity to one another, we concluded that high spatial resolution in the resulting map was not as 
important as model error rate. In this case, we kept the set of predictors that resulted in the lowest 
error rate. 

For pairs of map classes in which fine grain mapping was a high priority, we kept the predictor set 
that minimized the product 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒𝑒𝑒𝑟𝑟′), where err’ was a transformed version of err that prioritized 
the reduction of model error to 5%, but only gave partial credit for reducing error lower than that.61 
We did this because the training samples were not perfectly pure62 and we wanted to prioritize 
predictor resolution once a low error rate had been achieved. For example, a model to distinguish 
between a meadow and a woodland may have been trained with meadow samples that had occasional 
scattered trees. The best model in this case may have been one with a non-zero error rate against the 
training data. Table 10 lists the most frequently included predictors across all binary models. 

 
60 The assumption is being made that the average spatial resolution of the predictors included in model is related to 
the effective resolution at which it “maps.” Since RF is an inherently non-linear process, this is not necessarily true, 
though it is intuitively appealing. 

61 𝑒𝑒𝑒𝑒𝑟𝑟′ = �  
max �4, (𝑒𝑒𝑒𝑒𝑒𝑒+15)

4
� 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 5 

𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 5
 

62 See Figure 12. Small patches where an alternative map class might be preferable are present in many training 
plots.  
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Table 10. Most frequently used predictors in each selection tier. Up to ten predictors are shown for each 
tier, provided they were used in at least 2% of the models.A The tables in Section 2.6 provide 
descriptions for each predictor. 

Tier Resolution or type Predictor namesB and number of models in which used (in parentheses) 

1 3 meters n_d1c (614), n_w1c (560), r_n1_mx (512), n_g1b (501), n_w1a (497), n_e1c (466), n_n1a 
(426), r_w1_md (424), r_n1_md (397), n_n1c (380) 

2 6 meters n_nb_13 (456), n_wa_13 (383), n_wc_13 (383), n_nc_13 (381), n_wb_13 (381), n_uc_13 
(370), n_gc_13 (369), n_rc_13 (368), n_vc_13 (366), n_vb_13 (364) 

3 9–10 meters s_nir (431), s_grn (304), s_ndgr (251), s_ndng (220), s_red (220), s_ndvi (202), n_d3c 
(185), n_e3c (143), n_g3b (128), n_g3c (127) 

4 12 meters n_wa_26 (111), n_wb_26 (98), n_d4c (96), n_ra_26 (93), n_va_26 (93), n_vb_26 (92), 
n_ub_26 (91), n_nb_26 (90), n_wc_26 (90), n_na_26 (89) 

5 18–20 meters s_ndsi (178), s_sw1 (99), s_tcw (99), s_ndsw (87), s_ndmi (80), s_tcb (75), n_wa_39 (54), 
n_ra_39 (47), s_re1 (47), s_sw2 (47) 

6A topographic t_elev (445), t_topodry (220), t_slope (144), t_cpr750 (119), t_tpma7500 (106), t_rough30 
(103), t_cold7500 (101), t_tpp300 (101), t_tpp7500 (96), t_raddur (94) 

6B hydrologic h_hd_major (209), h_wetness (142), h_dtw (118), h_vd_major (97), h_upland (95), h_hd_perm 
(61), h_vd_perm (42) 

7 27–30 meters e_ndgrp (32) 

10 climate p_ppt_apr (65), p_ppt_oct (46), p_clidry (34), p_vmax_jul (34), p_ppt_jan (30), p_tmax_jan (30), 
p_vmax_apr (26), p_ppt_jul (25) 

A The ‘p’ variants of the summer satellite imagery metrics (“s”) were omitted from modeling due to a 
programming error. 

B Predictor names are preceded by a letter indicating to which source group they belong: “e” indicates late 
summer minimum-snow satellite imagery, “h” is hydrologic, “n” is aerial imagery NTM, “p” is climate, “r” is aerial 
imagery reflectance, “s” is summer satellite imagery, and “t” is topographic. 

Additional predictors for abiotic map classes 
Many models for abiotic map classes had a small number of predictors selected, since the most 
obvious difference between these and vegetated types is their lack of vegetation, which is easily 
ascertained from NAIP imagery. While these very simple models worked well under normal 
circumstances, we found that in deep shadows these models often performed poorly. The abiotic 
classes are generally restricted to environments that are easily described in terms of topographic and 
hydrologic metrics. For example, impounded water is found in areas with low slope and high 
topographic wetness, and barren colluvial deposits are found in concave areas with positive 
curvature. We added appropriate predictors to models involving these map classes to make sure they 
remained restricted to reasonable locations. 

2.7.5. Model creation 
We built a random forest of 507 trees for each map class pair,63 using the predictors selected above 
and specifying a sample size for each class equal to the minimum number of training plots available 

 
63 39 trees were generated for each of the 13 sample points at each training plot. 
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for either class.64 The resulting model was saved for use later in the prediction phase. We then 
estimated model error rates using 1000 bootstrap samples. Each was constructed by holding out one 
plot from the least common class and a proportional number from the most common class, again 
randomly selecting from the 13 sample points available at each plot for both training and test sets. 
Figure 14 illustrates the cumulative probability across error rate for all binary models. Of the 1,128 
models, 27% had an error rate of zero, a considerably smaller proportion than at the other NCCN 
parks. Substantial error is concentrated in a fairly small number of models; like the other parks, 95% 
of the models showed less than 10% error. 

 
Figure 14. Error rate across all binary models. Recall that due to heterogeneity within training samples 
(i.e., “inclusions”), some model error is to be expected. 

Significant model error is highly concentrated in a fairly small number of binary one-versus-one 
models; these are map class distinctions that are more likely to map poorly. Although the accuracy 
assessment (Section 3) provides more definitive metrics of map accuracy, some map classes were 
poorly sampled in the accuracy assessment; for those, model error may be useful supplementary 
information. Table 11 lists the 40 models with the highest error rates. 

 
64 When the classes to be predicted are not represented evenly in the training data, the more common class has a 
tendency to be modeled with greater accuracy than the other. This effect can be alleviated by downsampling the 
more common class (see Evans and Cushman 2009). The same technique was used earlier during the predictor 
selection phase. 
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Table 11. Binary models with highest cross-validated error rates. 

Map class 1 / Map class 2 (codes and abbreviated names) Error rate (%) 

H60W–Black alpine sedge / S49–Alpine heather 31.4 

H60W–Black alpine sedge / S48–Subalpine heather 27.1 

C05–W hemlock & sword fern / C07–N Casc dry Doug-fir 26.9 

H51W–Subalpine herbaceous wetland / H60W–Black alpine sedge 24.0 

C05–W hemlock & sword fern / C11–Mesic silver fir & w hemlock 23.9 

H50W–Lowland marsh & meadow / S40W–Low elevation shrub wetland 23.9 

R72–Colluvial barren / R73–Bedrock barren 23.8 

H51W–Subalpine herbaceous wetland / S41W–Subalpine willow wetland 22.1 

R71–Alluvial barren / R72–Colluvial barren 21.2 

H53–Showy sedge & Sitka valerian / S47–Successional huckleberry 19.8 

C04–Moist w hemlock & foamflower / C10–Moist silver fir & foamflower 19.7 

B35–Upland paper birch & conifer forest / C07–N Casc dry Doug-fir 19.4 

H57–Green fescue dry meadow / S47–Successional huckleberry 19.4 

S44–Thimbleberry, forbs & bracken fern / S45–Vine maple 19.2 

B33–Upland bigleaf maple & conifer / B35–Upland paper birch & conifer forest 19.2 

S48–Subalpine heather / S49–Alpine heather 18.8 

B30–Successional gravel bar / R71–Alluvial barren 18.1 

C11–Mesic silver fir & w hemlock / C14–Silver fir & big huckleberry 18.0 

H60W–Black alpine sedge / H62–Alpine sparse herbaceous 17.6 

S42–Sitka willow riparian / S44–Thimbleberry, forbs & bracken fern 17.3 

C13–Mtn hemlock & Cascade azalea / C14–Silver fir & big huckleberry 17.3 

B31–Broadleaf riparian & swamp forest / S40W–Low elevation shrub wetland 17.0 

R71–Alluvial barren / W81–Fresh water 17.0 

C13–Mtn hemlock & Cascade azalea / C20–Subalp fir & Sitka valerian 16.9 

H52–Cow parsnip / S44–Thimbleberry, forbs & bracken fern 16.8 

C10–Moist silver fir & foamflower / C11–Mesic silver fir & w hemlock 16.2 

C21–Mtn hemlock & heather / S48–Subalpine heather 15.9 

H54–Moist talus vegetation / R72–Colluvial barren 15.7 

S42–Sitka willow riparian / S43–Sitka alder 15.7 

B35–Upland paper birch & conifer forest / C05–W hemlock & sword fern 15.5 

C14–Silver fir & big huckleberry / C16–N Casc Doug-fir & subalp fir 15.3 

C11–Mesic silver fir & w hemlock / C12–Silver fir & Alaska blueberry 15.2 

B34–Bigleaf maple & Doug-fir debris apron / S45–Vine maple 15.1 

C15–Lodgepole pine & Doug-fir / C16–N Casc Doug-fir & subalp fir 14.9 

H62–Alpine sparse herbaceous / R72–Colluvial barren 14.9 

H62–Alpine sparse herbaceous / R73–Bedrock barren 14.0 

C05–W hemlock & sword fern / C06–W hemlock & salal 13.9 
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Table 11 (continued). Binary models with highest cross-validated error rates. 

Map class 1 / Map class 2 (codes and abbreviated names) Error rate (%) 

S42–Sitka willow riparian / S45–Vine maple 13.3 

S44–Thimbleberry, forbs & bracken fern / S46–Snowbrush & Scouler's willow 13.1 

C04–Moist w hemlock & foamflower / C05–W hemlock & sword fern 13.0 

 

2.7.6. Model prediction 
The map class prediction at each 3-meter pixel was made by evaluating the results of each one-
versus-one model and determining which class had the best overall performance. The “winner” of 
each model was determined using a simple threshold of 50% of the 507 trees. Figure 15 shows the 
outcome of a single binary model in one small area. We accomplished this by creating a round-robin 
schedule of “contests” using the circle method of Reverend Kirkman (1847). Not all models needed 
to be evaluated at each pixel; after a map class had “lost” five contests, it was eliminated from 
contention and any subsequent models including it were skipped. The selection of the “winning” map 
class was made by comparing the total probability loss margin across all models, rather than by the 
number of contests lost, which removed the possibility of tie outcomes. 

 
Figure 15. Binary model prediction example, for the model C10–MOIST SILVER FIR, WESTERN HEMLOCK AND 
FOAMFLOWER FOREST versus C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST. C10 was favored 
mostly on toe slopes and valley bottoms, while C11 was preferred on middle and higher slopes. White 
areas were not predicted because one or both map classes had already been eliminated from contention. 
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Processing made use of the R randomForest (Liaw and Wiener 2002), raster (Hijmans 2018), and 
rgdal (Bivand et al. 2014) packages, and was made more efficient by dividing the project area into 
tiles of approximately 2000 by 2000 pixels each. Each concurrent prediction process loaded the full 
set of predictor rasters for a single tile into memory and evaluated all needed models, tracking the 
number of losses and total loss margin by map class. The results for each binary model and the 
tracking information were copied to the network-attached storage device.65 The total loss margin, 
seen in Figure 16, can be interpreted as a map of model uncertainty. 

 
65 Although multithreaded prediction (using all available CPU cores in a single process) is possible in R, we 
encountered reliability issues with this approach, and also found it was significantly more efficient to use multiple 
single-threaded processes. 
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Figure 16. Prediction uncertainty. The predicted class won all contests in areas displayed as white. 
Colors from blue to red indicate that the best class lost at least one contest, by increasing amounts. 
Certainty is lowest where training data were inadequate, especially in difficult-to-access areas. 

2.8. Post-processing 
The random forests pixel-based predictions were converted into a final map by means of a sequence 
of post-processing steps. We used various approaches, described below, to add additional map 
classes for land cover types within the project area but not represented in training data. A filtering 
process was then used to convert the pixel-based predictions into a polygon-based map. After that, 
we did a final phase of manual map editing to address observed problems in a few areas. 

2.8.1. Additional map classes 
We defined several additional map classes—M92–BURNED WITH UNCERTAIN VEGETATION, M93–
TIMBERLAND WITH UNCERTAIN VEGETATION, M94–DEVELOPMENT, M95–ROADS IN PARK and M96–
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CLEARED CORRIDORS—to represent land cover types that were present in the project area but not in 
the training data. 

Burned areas 
The tasseled cap wetness index is particularly effective at estimating structural attributes in conifer-
dominated forests (Cohen and Spies 1992). We created a mask of recently burned areas by 
subtracting the tasseled cap wetness calculated from the historic midsummer satellite imagery from 
that calculated from the current midsummer imagery (see Sections 2.5.2 and 2.6.2). We empirically 
determined a change threshold that was effective in flagging areas that had experienced severe burns 
between those dates, restricting the results to pixels within the digitized recent fires mask (Section 
2.1.2). For areas identified as burned, if the model prediction was not a map class associated with 
early recovery from fire66 (e.g., B33–UPLAND RED ALDER, BIGLEAF MAPLE AND CONIFER FOREST, S46–
SNOWBRUSH AND SCOULER'S WILLOW SHRUBLAND, S47–SUCCESSIONAL HUCKLEBERRY SHRUBLAND), 
we recoded it to M92–BURNED WITH UNCERTAIN VEGETATION. The burned class included post-fire 
recovery areas as well as recent burns. We assumed that the model prediction would generally be an 
acceptable result for areas recovering from burns earlier than the mid-1980s. Because east-side post-
fire communities are better represented in the classification and training data, burns in west-side 
forests are more likely to be mapped as M92–BURNED WITH UNCERTAIN VEGETATION. 

Development 
A variety of land cover types on both sides of the park boundary are actively maintained by human 
land-use practices (e.g., buildings for residential and commercial purposes, agriculture, roads). We 
designated three map classes to encompass these: M95–ROADS IN PARK (representing roads within 
the park boundaries only), M96–CLEARED CORRIDORS (power line corridors within the park, and the 
US-Canada boundary slash zone), and M94–DEVELOPMENT (representing everything else, including 
other development within the park). 

We began by digitizing the roads, corridors and developed areas inside the park (using 2015 NAIP 
imagery), as well as major areas of development and agriculture outside the park boundary. Hand-
mapping was done at 1:4,000 scale; road centerlines were buffered by either seven or 14 meters 
depending on their size. We created a managed areas mask by excluding the park and adjacent USFS 
wilderness from the project area, for use in later steps. 

We added roads outside the park to M94–DEVELOPMENT by resampling the developed land cover 
classes in the 2016 National Land Cover Database (Yang et al. 2018) to our mapping resolution and 
removing areas that lay either outside the managed areas mask or within our digitized development 
and agriculture layer. Areas within the digitized development and agriculture layer were then added 
to M94–DEVELOPMENT unless they had modeled as a forest or woodland, a dense tall shrubland, or 
ocean, all of which can be reasonable map results in those places. Although ponds are a frequent 
feature in developed areas, we excluded them as there was a tendency to erroneously map fresh water 
in flat developed areas with cast shadows from adjacent trees. Digitized developed areas within the 

 
66 We referred to Franklin and Dyrness (1973) in compiling this list. 
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park were also included in M94–DEVELOPMENT. Digitized roads within the park and cleared 
corridors were included as separate map classes, M95–ROADS IN PARK and M96–CLEARED 

CORRIDORS. 

Logging 
We began by flagging disturbed forests, treating the impact of logging similarly to that of fires, by 
thresholding the historic change in tasseled cap wetness to detect areas that had experienced major 
canopy loss since the mid-1980s. We then applied a multi-stage majority filter and excluded areas 
that were smaller than a half-hectare, were within the park or adjacent wilderness areas, or had 
already been assigned to M94–DEVELOPMENT. Because flooding along major rivers was another 
significant cause of forest disturbance, areas that modeled as a typically riparian map class, were 
within five vertical feet of a major river and in a location with high hydrologic wetness (see Section 
2.6.4) were also excluded.  

The remaining disturbed areas were identified as potentially logged and were examined manually to 
remove those that did not appear to be within timber harvest boundaries. The rest were recoded to 
M93–TIMBERLAND WITH UNCERTAIN VEGETATION unless they had modeled as a forest, woodland or 
tall shrubland map class. The timberland class included early seral and planted forests, as well as 
recent regeneration harvests. We assumed that the model prediction would generally be an acceptable 
result for areas recovering from logging earlier than the mid-1980s. 

2.8.2. Filtering 
We converted the 3-meter pixel predictions to a polygon map via a sequence of filtering steps. 
Because lifeform can be predicted at very high accuracy but map classes are less easily distinguished, 
we began with a lifeform-specific majority filter that reassigned each pixel to the most common map 
class of the same lifeform among the neighboring pixels. No pixels were changed to a different 
lifeform than that to which they were predicted during this step. The analysis window ranged from 3-
by-3 to 7-by-7 pixels depending on lifeform We next addressed fine scale speckle by applying two 
successive 3-by-3 pixel majority filters across all map classes with no lifeform specificity. 

We then moved to filtering based on patch size and shape, beginning by removing very small patches 
of fewer than nine contiguous 3-meter pixels, reassigning pixels in those patches to the nearest 
persisting patches. The shortest distance from each pixel to any neighboring patch was determined 
and the mean depth of each patch (d) was found by summarizing over its constituent pixels. Through 
experimentation, we defined an additional parameter g to describe patch shape: 

𝑔𝑔 = 𝑑𝑑3 2⁄  𝑎𝑎−1 4⁄  

where a is the patch area. While d describes the average width of a patch, g is a shape parameter 
describing the width of a patch compared to its overall size. We then empirically determined map 
class-specific thresholds for d and g; patches for which either parameter exceeded its threshold were 
kept, while the others were eliminated, assigning the constituent pixels to the nearest adjacent patch. 
This allowed us to filter map classes that often occur in long slender strips (e.g. C26–CONIFER 

KRUMMHOLZ AND TREED CLIFF) differently than those that typically occur over more extensive areas. 
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We followed this with a final additional patch size filter, with a map class-specific size requirement 
ranging from nine to 49 pixels (81–441 m2). 

2.8.3. Map editing 
We scanned the resulting polygon map for obvious errors that could be fixed easily by hand, finding 
few such issues. We then converted back to raster format and ran a final 3x3-pixel majority filter to 
eliminate any stray missing pixels from the map before converting back to polygons for the final 
time. The final map is available in Nielsen et al. (2021d).  
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3. Accuracy Assessment 
3.1. Background 
A map accuracy assessment (AA) determines the degree to which a map correctly represents on-the-
ground conditions (see Lea and Curtis 2010, Congalton and Green 1999). A confusion matrix or 
contingency table tabulates the misassignments found between each possible pair of map classes. The 
information from this matrix is used to draw conclusions about the quality of mapping for each map 
class; the results allow an evaluation of potential map applications and applicable caveats. User’s 
accuracy (UA) and producer’s accuracy (PA) describe two relevant aspects of map accuracy. 

UA is a reliability measure to estimate the probability that the map is correct where a particular class 
is mapped. It is inversely related to the false-positive or commission error (CE) rate (the probability 
of mapping the class where it is not present). Low UA may indicate that a class is over-mapped 
(mapped more often than it actually occurs). It also can be evidence that classes that are particularly 
confused with it are themselves under-mapped (mapped less often than they actually occur). 

PA is a mappability measure to estimate the probability that the map is correct where a particular 
class is found on the ground. It is inversely related to the false-negative or omission error (OE) rate 
(the probability of omitting the class where it is present). Low PA may indicate that a class is under-
mapped. Because PA is relative to the true land cover, rather than the mapped land cover, its 
calculation is dependent on an estimate of the true quantity of the class present in the study area. 
Thus, two distinct estimates of PA can be made. The first, relative to the number of plots found in the 
field, is calculated from a confusion matrix drawn directly from the sampled plots, the sample 
contingency table (SCT). The second, a more meaningful quantity, is scaled to an estimate of the true 
area occupied by each class, the population contingency table (PCT). 

We followed the procedures and formulas provided by Lea and Curtis (2010) for sample design, 
sample protocol, and analysis, to the extent possible.67 NPS standards specify an 80% accuracy goal 
for each individual map class hosting native vegetation communities. In addition to assessing the 
class-specific UA and PA against this standard, we used UA and PA in combination to produce an 

 
67 The logistics involved in mounting the AA field campaign with an experienced field crew—in addition to other 
project management considerations—required the AA fieldwork to occur earlier than would have been ideal. At the 
time of the fieldwork, the mapping associations and map classification were incomplete. The draft map relied on for 
the sample design had significant differences to the final map. Because we recognized the challenges that lay ahead 
in making the AA data compatible with an as-yet uncompleted classification and map, we had no choice but to 
violate some important guidance from Lea and Curtis (2010), collecting substantial field data during the fieldwork, 
and using it later in the office to arrive at a best call using the final classification (though we did lean heavily on the 
field crew’s call whenever possible). Cognizant of the concern that the expertise possessed by team members would 
not be available to later users, we based our assessment solely on field materials that will be available—namely, the 
map class indicator species lists available in Nielsen et al. (2021c). Furthermore, all map production steps 
undertaken subsequent to the fieldwork—the creation of mapping associations, their crosswalk to map classes, 
changes in the modeling scheme, and (most importantly) post-processing and map editing—were done without 
reference to the AA field data, which were not fully processed until the final year of the project. 
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estimate of the true area occupied by each class in the park. These estimates were in turn used to 
adjust the overall map accuracy by area-weighting the per-class accuracies; this step was necessary to 
compensate for the stratified random sampling design that guided sample selection.  

3.2. Sample design 
We used a random sampling approach, stratified by mapped class, to select sample locations. We 
targeted all natural vegetated classes mapped within the park, including M92–BURNED WITH 

UNCERTAIN VEGETATION. We also targeted three nominally abiotic classes—R71–ALLUVIAL BARREN 

AND DEBRIS-COVERED ICE, R72–COLLUVIAL BARREN and R73–BEDROCK BARREN—because they often 
host a small amount of vegetation and have potential for confusion with several vegetated map 
classes, such as B30–SUCCESSIONAL GRAVEL BAR SHRUBLAND, H62–ALPINE SPARSE HERBACEOUS 

VEGETATION and H58–BEDROCK BALDS AND SPARSELY VEGETATED FOREST OPENINGS. Accurate 
mapping of these abiotic classes is necessary in order to accurately map similar vegetated classes. All 
map classes were mapped on greater than 50 hectares, corresponding to a sampling goal of 30 plots 
each (Lea and Curtis 2010). 

3.2.1. Inference area 
The AA inference area was defined based on accessibility requirements. A primary sampling mask 
was created by buffering roads, trails, and common mountaineering routes by a fixed distance of 250 
meters68 and excluding barriers such as private property, impassible cliff bands, major streams, and 
slopes greater than 45 degrees. A secondary mask, to be used only for map classes that could not be 
adequately sampled within the primary mask, was created using a 500-meter buffer. A significant 
number of plots were collected outside the primary mask, so we treat the inference area as the region 
within the secondary mask. The resulting region (Figure 17) spanned 39,149 hectares, 14.2% of the 
total area of the complex.69 Because crews were not able to visit the full area in which sample 
locations were generated, we will refer to the targeted sampling region as the attempted inference 
area (AIA). 

 
68 Restricting the sampling area to these corridors was necessary for safety and efficiency. Some segments of the 
trail network were not included. The single season available for sampling required that backpacking trips be planned 
for maximum efficiency, and some trail segments would have required too much effort to reach or did not fit well 
with other established sampling objectives. 
69 Although this falls well short of the 30% standard given in Lea and Curtis (2010), it was impossible to achieve 
sampling productivity goals with a larger inference area (see Table 12 for a summary of the per-class inference area 
proportion). Given limited resources, we chose to prioritize the number of samples collected over expanding the 
inference area. 
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Figure 17. Accuracy assessment inference area. Field samples were acquired within the reached 
inference area, shown in black. The attempted inference area also includes gray-shaded areas which 
were not accessed by field crews. 

3.2.2. Sample selection 
We attempted to minimize map class membership ambiguity in the samples by targeting only points 
for which at least 75% of the 3-meter pixels in the surrounding 30 meters were identified as the target 
map class in the draft map. Stricter requirements (e.g., to allow for field and map positional error, see 
Lea and Curtis 2010) would have made achieving sampling goals for many of the map classes 
difficult or impossible. Because crew size limitations prevented independent observations for 
overlapping plots, and to minimize clumping of targets, we specified a minimum separation of 250 
meters between targets, irrespective of mapped class. 
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We randomly selected 45 points within the AIA for each mapped class. 30 were designated as the 
initial sampling targets, and the other 15 points served as a reservoir for later target selection to 
replace rejected or missed plots. This allowed us to obtain a spatially representative collection of 
plots from each class—spreading samples across different field trips—without lowering the chances 
of obtaining an adequate number of samples for any. 

3.3. Field data 
3.3.1. Field logistics 
NPS field crews collected field data from May through September 2016. Eight seasonal NPS 
employees worked in teams of two. As crews moved along roads and trails, they sampled every plot 
that the day’s logistics and safety factors would allow. This increased the chance of reaching target 
map class totals without having to send crews back to areas of the park that can take multiple days to 
reach. After each seven day tour, a day was spent in the office entering a brief summary of each plot 
along the route: whether it was attempted, whether it was reached, and what the field map class call 
had been. This summary was used to assess the updated prognosis for achieving the sampling goal 
for each map class, based on the opportunities remaining in the target pool. Replacement plots for 
skipped targets were selected and high priority map classes were designated as those most in danger 
of falling short of sampling goals. Crew leaders planned their itineraries accordingly,70 and missions 
planned for subsequent weeks were adjusted as some trips contained a greater proportion of high 
priority map classes. 

3.3.2. Field protocol 
Crews navigated to each target location and assessed the surroundings. If obvious structural 
vegetation transitions were within 30 meters, they moved the plot center to a more homogeneous 
point in the same vegetation type and updated the location using a GPS. If plot centers were not 
safely accessible and high confident assessments of plot location and vegetation call could be made, 
crews were permitted to make their observations from a distance. In this case, they noted the distance 
and bearing at which the plot lay from their observation point. Plots that could not be reached or 
assessed were discarded. 

A 30-meter radius around the sample point was considered. If multiple distinct vegetation patches 
were present in that area, each was described separately. A full species list was compiled for the main 
patch around the center point. If other patches were present, the ten most abundant species in each 
were noted. The cover of each species was estimated to the nearest 1% cover. Species with cover of 
less than 1%, or present in the immediate vicinity and plausibly present within the plot, were 
documented as having trace cover. Overstory and understory tree species data were documented 
separately with a height of five meters used to discriminate them. The cover of abiotic types (e.g., 
water, colluvial rock, bedrock) was recorded if 10% or greater. 

 
70 Field crews were not knowledgeable of the class that each plot had been mapped to, to avoid influencing their 
judgment. 
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The map class with the best fit to each patch was noted, in addition to any plausible alternative 
calls.71 Each call was assigned a confidence of high, medium or low. All patches were documented 
on a plot diagram, along with any nearby reference points, to provide additional confidence in 
assessing plot location. Slope, aspect and several other topographic variables were recorded. Photos 
were taken from the plot center in the four cardinal directions. Finally, a brief description of the plot 
and pros and cons for each of the map class calls were written. Figure 18 contains a completed AA 
field form. 

 
Figure 18. Completed accuracy assessment data sheet, collected in 2016. 

 
71 Descriptions of the nascent map classes, which later evolved into Nielsen et al. (2021c), were provided for this 
purpose. 
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3.3.3. Quality control 
Accuracy assessment plot data went through a quality control process similar to that of map training 
data. The NPS phase of the spatial accuracy QC started after the field tour. At the conclusion of each 
tour, locations representing moved points were uploaded and reviewed for accuracy by a team 
member who had visited the plot. Subsequent INR QC verified and if necessary adjusted the location 
by comparing NAIP imagery and the field diagram. 

Using the species cover data, plot description and diagram, and with reference to imagery and map 
class indicator species (see Section 2.5.3), each plot was checked for the correctness of the map class 
calls. Every effort was made to label the main patch for each plot with a single best map class call. 
However, there were two situations in which we chose to allow some flexibility. Sometimes, we 
were unable to make a single best call because the floristics field data were perfectly intermediate 
between two classes.72 Both calls were treated as legitimate possible answers at the 79 plots where 
this occurred. In another 33 plots, the identified homogeneous patches were so small that we 
anticipated the possibility of a label mismatch when in fact the vegetation was correctly predicted. 
This might result from spatial offset between the GPS location, the layers by which the analyst 
assessed the plot, and the model-based prediction, as well as from filtering the predictions to MMU 
scale. If the boundary with another map class was within ten meters or less of the assessed point, we 
entered that map class as an additional correct answer. During the course of individual plot QC, if 
field-documented alternate patches were both clearly separable from the main patch and clearly 
assignable to a map class, we added them as additional AA data. 

Throughout this process, the analyst did not have access to the final map polygons or labels. If a plot 
could not be confidently located or its correct map class could not be narrowed down to at most two 
possibilities, it was discarded. Twenty-one plots were rejected on these grounds, most of them 
because of uncertain location, extreme heterogeneity, or ambiguity due to the impact of disturbance. 

3.3.4. Field plot totals and reached inference area 
A total of 916 field plot samples were collected for the accuracy assessment; 895 of them passed the 
QC process. Fifty-six additional AA locations were added in alternate patches, for a total of 951 field 
plots. We determined the reached inference area (RIA) by removing from the AIA any route 
portions at least 1 km long and lacking sampled plots. The RIA totaled 28,560 hectares, equivalent to 
73.0% of the attempted inference area or 10.4% of the full park. Table 12 gives the overall 
effectiveness at reaching the accessible portions of each field-targeted map class and the class-
specific inference area fraction. We fell well short of the standard of Lea and Curtis (2010), who 
specify that “a minimum of at least the most accessible 30th percentile of abundant classes should be 
included in even the most difficult of access situations.” That was achieved for only seven of the 45 
targeted map classes. 

 
72 Burned areas were also given latitude; either the best fit vegetated map class or M92–BURNED WITH UNCERTAIN 
VEGETATION were considered correct. 
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Table 12. Map class-specific accuracy assessment inference areas. For each class, the mapped area in 
(a) the park, (b) the attempted inference area (AIA) and (c) the reached inference area (RIA), followed by 
(d) the fraction reached of the area mapped in the AIA (a measure of field effectiveness), and (e) the 
fraction of the total mapped area represented in the RIA (a measure of the representativeness of the 
inference area). 

Class code and abbreviated name 
Mapped in 

park (ha) 
Mapped in 

AIA (ha) 
Mapped in 

RIA (ha) 
% of AIA 
reached 

% Rep 
in RIA 

R73–Bedrock barren 34,899 530 439 82.9 1.3 

C26–Conifer krummholz & treed cliff 7,167 225 167 74.5 2.3 

R71–Alluvial barren 3,705 329 175 53.1 4.7 

C21–Mtn hemlock & heather 18,832 1,304 953 73.1 5.1 

R72–Colluvial barren 14,140 970 751 77.4 5.3 

S43–Sitka alder 14,551 1,044 794 76.0 5.5 

C12–Silver fir & Alaska blueberry 11,169 823 662 80.4 5.9 

C13–Mtn hemlock & Cascade azalea 17,255 1,672 1,199 71.7 6.9 

H60W–Black alpine sedge 295 29 21 71.0 7.0 

H62–Alpine sparse herbaceous 4,850 525 347 66.1 7.2 

S45–Vine maple 8,087 964 635 65.9 7.9 

S48–Subalpine heather 5,495 633 458 72.5 8.3 

S49–Alpine heather 4,837 566 404 71.4 8.4 

H54–Moist talus vegetation 2,349 231 198 85.5 8.4 

C11–Mesic silver fir & w hemlock 12,320 1,829 1,211 66.2 9.8 

H58–Bedrock balds & forest openings 3,262 394 342 86.8 10.5 

M92–Burned 8,788 1,210 935 77.3 10.6 

H53–Showy sedge & Sitka valerian 1,521 193 168 87.1 11.0 

C05–W hemlock & sword fern 15,358 3,404 1,762 51.8 11.5 

C10–Moist silver fir & foamflower 7,306 1,761 1,050 59.6 14.4 

C25–N Casc subalp fir & whitebark pine 3,891 648 590 91.0 15.2 

S47–Successional huckleberry 2,692 481 410 85.2 15.2 

C20–Subalp fir & Sitka valerian 6,507 1,312 1,091 83.1 16.8 

H51W–Subalpine herbaceous wetland 298 58 54 92.2 18.1 

C06–W hemlock & salal 3,783 1,461 691 47.3 18.3 

C15–Lodgepole pine & Doug-fir 3,856 954 719 75.4 18.6 

C16–N Casc Doug-fir & subalp fir 7,268 1,497 1,398 93.4 19.2 

S42–Sitka willow riparian 1,223 323 238 73.8 19.5 

B35–Upland paper birch & conifer forest 2,843 902 556 61.6 19.5 

H57–Green fescue dry meadow 1,898 427 387 90.6 20.4 

C22–Subalpine larch 3,548 826 741 89.7 20.9 

S46–Snowbrush & Scouler's willow 3,771 892 790 88.6 20.9 

S44–Thimbleberry, forbs & bracken fern 254 71 57 80.6 22.6 



 

76 

Table 12 (continued). Map class-specific accuracy assessment inference areas. For each class, the 
mapped area in (a) the park, (b) the attempted inference area (AIA) and (c) the reached inference area 
(RIA), followed by (d) the fraction reached of the area mapped in the AIA (a measure of field 
effectiveness), and (e) the fraction of the total mapped area represented in the RIA (a measure of the 
representativeness of the inference area). 

Class code and abbreviated name 
Mapped in 

park (ha) 
Mapped in 

AIA (ha) 
Mapped in 

RIA (ha) 
% of AIA 
reached 

% Rep 
in RIA 

S41W–Subalpine willow wetland 243 63 59 93.1 24.2 

B30–Successional gravel bar 314 124 84 67.2 26.6 

C09–Ponderosa pine & Doug-fir 3,647 1,151 1,033 89.7 28.3 

B31–Broadleaf riparian & swamp forest 2,025 872 601 68.9 29.7 

C14–Silver fir & big huckleberry 1,754 701 525 74.9 29.9 

C07–N Casc dry Doug-fir 5,055 2,229 1,681 75.4 33.3 

S40W–Low elevation shrub wetland 282 117 97 82.7 34.3 

B33–Upland bigleaf maple & conifer 1,275 642 443 69.1 34.8 

H50W–Lowland marsh & meadow 158 74 57 77.6 36.1 

C04–Moist w hemlock & foamflower 3,159 1,608 1,160 72.1 36.7 

B34–Bigleaf maple & Doug-fir debris apron 2,094 870 845 97.1 40.4 

H52–Cow parsnip 92 54 47 86.2 50.5 

 

3.4. Photo-interpretation 
An additional 36 randomly generated plots were assessed within the AIA for mapped abiotic classes 
that were not targeted for field sampling (W81–FRESH WATER and W82–EXPOSED SNOW AND ICE). 
These points were photo-interpreted to map class. Although not included in the AA contingency 
tables, these classes occupy substantial portions of the park and we felt it was important to have an 
estimate of their accuracy. 

3.5. Sampling outcomes 
A total of 987 sample plots passed the QC process or were photo-interpreted (Figure 19). 
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Figure 19. Accuracy assessment (AA) plot locations. 951 quality-controlled field-collected AA plots (blue 
dots) and 36 photo-interpreted points (red dots) are shown. 

The final coordinates for each plot were used to extract the predicted map class label from the final 
map. Table 13 gives, for each targeted map class, the mapped area (in hectares), the number of plots 
mapped as and identified as the class, and the fraction of the sampling goal that was achieved. Small 
numbers of mapped plots result in uncertain estimates of user’s accuracy, whereas small numbers of 
identified plots result in uncertain estimates of producer’s accuracy (and uncertain map area 
corrections for any classes confused with it). 
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Table 13. Accuracy assessment (AA) plot totals. For each class, the mapped area in the park, the 
number of AA plots mapped as and identified as the class, and the fraction of the sampling goal achieved 
(minimum based on mapped and identified plots). The sampling goal was 30 plots per class. Poorly 
sampled classes are listed first. 

Class code and abbreviated name 
Mapped area in 

park (ha) 
# of plots 

mapped as 
# of plots 

identified as 
% of goal 
achieved 

H52–Cow parsnip 92 2 3 7 

H60W–Black alpine sedge 295 3 3 10 

B30–Successional gravel bar 314 6 7 20 

C06–W hemlock & salal 3,783 8 9 27 

S40W–Low elevation shrub wetland 282 8 9 27 

R71–Alluvial barren 3,705 10 8 27 

C11–Mesic silver fir & w hemlock 12,320 11 13 37 

B35–Upland paper birch & conifer forest 2,843 14 11 37 

H50W–Lowland marsh & meadow 158 12 11 37 

C05–W hemlock & sword fern 15,358 13 12 40 

C12–Silver fir & Alaska blueberry 11,169 16 12 40 

C14–Silver fir & big huckleberry 1,754 17 12 40 

S44–Thimbleberry, forbs & bracken fern 254 12 14 40 

C10–Moist silver fir & foamflower 7,306 13 18 43 

H51W–Subalpine herbaceous wetland 298 18 13 43 

R73–Bedrock barren 34,899 16 13 43 

S41W–Subalpine willow wetland 243 16 15 50 

S42–Sitka willow riparian 1,223 15 17 50 

H58–Bedrock balds & forest openings 3,262 16 18 53 

C07–N Casc dry Doug-fir 5,055 16 17 53 

C25–N Casc subalp fir & whitebark pine 3,891 26 16 53 

C26–Conifer krummholz & treed cliff 7,167 17 16 53 

H54–Moist talus vegetation 2,349 27 16 53 

B33–Upland bigleaf maple & conifer 1,275 19 20 63 

M92–Burned 8,788 25 20 67 

C04–Moist w hemlock & foamflower 3,159 23 21 70 

S45–Vine maple 8,087 27 21 70 

B31–Broadleaf riparian & swamp forest 2,025 25 22 73 

C09–Ponderosa pine & Doug-fir 3,647 24 25 80 

C15–Lodgepole pine & Doug-fir 3,856 24 24 80 

C21–Mtn hemlock & heather 18,832 24 28 80 

S47–Successional huckleberry 2,692 24 27 80 

H62–Alpine sparse herbaceous 4,850 25 24 80 

C13–Mtn hemlock & Cascade azalea 17,255 26 30 87 
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Table 13 (continued). Accuracy assessment (AA) plot totals. For each class, the mapped area in the 
park, the number of AA plots mapped as and identified as the class, and the fraction of the sampling goal 
achieved (minimum based on mapped and identified plots). The sampling goal was 30 plots per class. 
Poorly sampled classes are listed first. 

Class code and abbreviated name 
Mapped area in 

park (ha) 
# of plots 

mapped as 
# of plots 

identified as 
% of goal 
achieved 

B34–Bigleaf maple & Doug-fir debris apron 2,094 26 26 87 

H57–Green fescue dry meadow 1,898 26 27 87 

H53–Showy sedge & Sitka valerian 1,521 31 27 90 

S48–Subalpine heather 5,495 28 43 93 

S46–Snowbrush & Scouler's willow 3,771 29 33 97 

C16–N Casc Doug-fir & subalp fir 7,268 30 36 100 

S49–Alpine heather 4,837 32 31 103 

C20–Subalp fir & Sitka valerian 6,507 38 32 107 

C22–Subalpine larch 3,548 33 45 110 

S43–Sitka alder 14,551 41 41 137 

R72–Colluvial barren 14,140 49 55 163 

 

The sampling goal of 30 samples per mapped class, needed for a confident assessment of UA, was 
achieved for only seven of the 45 classes included in the AA. Two classes (H52–COW PARSNIP 

MEADOW and H60W–BLACK ALPINE SEDGE WETLAND) had less than five mapped occurrences 
sampled. The success rate for identified plots, needed for a confident assessment of PA, was similar. 
Only nine classes were identified at least 30 times. The same two classes that were poorly sampled 
from the UA perspective were also poorly sampled for PA. 

On the other hand, several classes were oversampled, although for only one was this drastic (R72–
COLLUVIAL BARREN). Although the plan had been to remove plots corresponding to types that had 
been adequately sampled from the crew’s target lists, there were difficulties in implementing the plan 
given limited office time between field tours. Crews themselves were not able to steer away from 
oversampled types because they were unaware of the map class label attached to each point. 

3.6. Analysis 
A total of 45 classes were included in the AA analysis, including all classes hosting natural 
vegetation communities. Three nominally abiotic classes (R71–ALLUVIAL BARREN AND DEBRIS-
COVERED ICE, R72–COLLUVIAL BARREN and R73–BEDROCK BARREN) were also included; field 
sampling permitted a confident assessment of their accuracy and they often provide important habitat 
both for unmappably sparse plant communities and for wildlife populations. The two classes for 
which most AA samples were photo-interpreted73 were excluded from further analysis. We noted that 
the 42 samples mapped as these classes indicated a user’s accuracy of 97.6%, but felt that because 

 
73 W81–FRESH WATER and W82–EXPOSED SNOW AND ICE. 
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they were not field-sampled and generally do not host natural vegetation communities, their inclusion 
would artificially inflate the overall accuracy. Four classes mapped via PI or deductive modeling and 
unlikely to represent areas of high conservation significance74 were also excluded from further 
analysis. Three field-sampled plots fell into one of these classes; all were correctly mapped. A total 
of 941 plots, all field-collected, remained in the analysis. 

The predicted map class was extracted from the 3-meter pixel at each plot center point and compared 
to the field-sourced map class calls. For plots with two best calls, we allowed either as a correct 
answer; 29 of these 79 plots were counted as correct because the map matched the second of the two 
best calls (11 were mapped as M92–BURNED WITH UNCERTAIN VEGETATION). For plots with a 
secondary patch call within ten meters of the assessed center point, we also allowed that as a correct 
answer.75 Of these 33 plots, 11 were called correct based on matching the secondary patch call. If the 
plot was counted as incorrect, it was labeled as the first best map class call from the primary patch. 

The sample contingency table was created by indexing the observed map class against the predicted 
map class for each plot and summing across all plots. User’s accuracy was calculated for each map 
class by dividing the number of correct samples by the total number of samples mapped as that class. 
Overall sample-based map accuracy was calculated by dividing the total number of correct calls by 
the total number of samples; however, this measure is misleading as it is biased by the use of the 
stratified random sampling design, which does not sample map classes in proportion to their 
prevalence in the project area (sample-based PA are similarly biased). The resulting SCT is shown in 
INR (2021a). The overall accuracy based on the raw samples is 84.5%. 

To address the bias introduced by the stratified random sample design, a population contingency 
table (PCT) was created by reweighting the proportions represented by the cells in each row of the 
SCT by the fraction of the reached inference area mapped to that class. Each cell of the PCT, rather 
than containing raw sample counts, represents the estimated proportion of the RIA that is mapped as 
the class defined by the cell’s row and identified as the class defined by the cell’s column. We 
recalculated PA and overall accuracy based on the PCT; the revised measures represent the best 
estimates of the results that would have been obtained had the AA sample design been based on a 
simple random sample. The resulting PCT is shown in INR (2021a). The overall accuracy, after 
correcting for map class prevalence in the inference area, is 82.0%. Note that the mapped areas in the 
table sum to 27,022 hectares rather than the 28,560 hectares contained in the RIA. The six classes 
excluded from the analysis were mapped on the remaining portion of the RIA. 

The kappa coefficient, which provides an accuracy measure that accounts for the probability of map 
class agreement by chance alone, was calculated. Kappa is a proportion ranging from 0–100%, where 
a value of zero indicates a map that is no more accurate than would be expected by chance alone. 
90% confidence intervals were calculated for all accuracy estimates. Finally, a corrected area 

 
74 M93–TIMBERLAND WITH UNCERTAIN VEGETATION, M94–DEVELOPMENT, M95–ROADS IN PARK and M96–
CLEARED CORRIDORS. 
75 This was intended to partially address nonthematic errors resulting from spatial misregistration (Foody 2002). 
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estimate was created for each map class by multiplying the sum of the proportions in each column by 
the total mapped area of all the map classes in the PCT. 

The class-specific user’s accuracies are summarized in Table 14. The accuracy estimate met the 80% 
standard for 34 of the 45 map classes. However, for only 15 was the 90% confidence interval entirely 
above the 80% mark. Many of the 11 that failed to meet the standard were poorly sampled. Only two 
classes, C25–NORTH CASCADES SUBALPINE FIR AND WHITEBARK PINE WOODLAND and H54–MOIST 

TALUS VEGETATION, were conclusively demonstrated to fail to meet the standard via the 90% 
confidence interval. 

Table 14. Map class-specific user’s accuracy (UA) for each assessed map class, with poorly mapped 
classes first. Asterisks indicate true values that are at least 90% confident to lie either fully above or 
below the 80% accuracy target. 

Class code and full name 
# of plots 

mapped as UA estimate 
UA 90% conf 

interval 

C05–Western hemlock, Douglas-fir and sword fern forest 13 54%* 27–80% 

C25–North Cascades subalpine fir and whitebark pine woodland 26 54%* 36–72% 

H54–Moist talus vegetation 27 56%* 38–73% 

C12–Silver fir, hemlock and Alaska blueberry forest 16 63% 39–86% 

C14–Silver fir, big huckleberry and beargrass forest 17 65% 43–87% 

C07–North Cascades dry Douglas-fir forest 16 69% 47–91% 

B35–Upland paper birch and conifer forest 14 71% 48–95% 

H51W–Subalpine herbaceous wetland 18 72% 52–92% 

C20–Subalpine fir and Sitka valerian forest and woodland 38 74% 61–87% 

H53–Showy sedge and Sitka valerian meadow 31 74% 60–89% 

R71–Alluvial barren and debris-covered ice 10 80% 54–100% 

S45–Vine maple shrubland 27 78% 63–93% 

C11–Mesic silver fir and western hemlock forest 11 82% 58–100% 

M92–Burned with uncertain vegetation 25 80% 65–95% 

S44–Thimbleberry shrubland, tall forbs and bracken fern 12 83% 61–100% 

C06–Western hemlock, Douglas-fir and salal forest 8 88% 62–100% 

S49–Alpine heather shrubland 32 81% 68–94% 

R73–Bedrock barren 16 81% 62–100% 

C10–Moist silver fir, western hemlock and foamflower forest 13 85% 64–100% 

C04–Moist western hemlock, Douglas-fir and foamflower forest 23 83% 67–98% 

C16–North Cascades Douglas-fir and subalpine fir woodland 30 83% 70–96% 

H62–Alpine sparse herbaceous vegetation 25 84% 70–98% 
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Table 14 (continued). Map class-specific user’s accuracy (UA) for each assessed map class, with poorly 
mapped classes first. Asterisks indicate true values that are at least 90% confident to lie either fully above 
or below the 80% accuracy target. 

Class code and full name 
# of plots 

mapped as UA estimate 
UA 90% conf 

interval 

B34–Bigleaf maple and Douglas-fir debris apron forest 26 85% 71–98% 

H58–Bedrock balds and sparsely vegetated forest openings 16 88% 71–100% 

S41W–Subalpine willow wetland 16 88% 71–100% 

C15–Lodgepole pine and Douglas-fir woodland 24 88% 74–100% 

H50W–Lowland marsh and meadow 12 92% 74–100% 

H52–Cow parsnip meadow 2 100% 75–100% 

B31–Broadleaf riparian and swamp forest 25 88% 75–100% 

C13–Mountain hemlock, silver fir and Cascade azalea forest 26 88% 76–100% 

S47–Successional huckleberry shrubland 24 92%* 80–100% 

H57–Green fescue dry meadow 26 92%* 82–100% 

C26–Conifer krummholz and treed cliff 17 94%* 82–100% 

H60W–Black alpine sedge wetland 3 100%* 83–100% 

B33–Upland red alder, bigleaf maple and conifer forest 19 95%* 84–100% 

C22–Subalpine larch woodland 33 94%* 86–100% 

C09–Ponderosa pine and Douglas-fir woodland 24 96%* 87–100% 

S43–Sitka alder shrubland 41 95%* 88–100% 

S48–Subalpine heather shrubland 28 96%* 89–100% 

B30–Successional gravel bar shrubland 6 100%* 92–100% 

S40W–Low elevation shrub-dominated wetland 8 100%* 94–100% 

S42–Sitka willow riparian shrubland 15 100%* 97–100% 

S46–Snowbrush and Scouler's willow shrubland 29 100%* 98–100% 

C21–Mountain hemlock, subalpine fir and heather woodland 24 100%* 98–100% 

R72–Colluvial barren 49 100%* 99–100% 

 

The class-specific producer’s accuracies, obtained from the PCT, are summarized in Table 15. The 
accuracy estimate met the 80% standard for 32 of the 45 map classes. However, for only 17 of them 
was the 90% confidence interval entirely above the 80% mark. Most of the 13 classes that failed to 
meet the standard were poorly sampled. Two classes, S44–THIMBLEBERRY SHRUBLAND, TALL FORBS 

AND BRACKEN FERN and C22–SUBALPINE LARCH WOODLAND, were conclusively demonstrated to fail 
to meet the standard. 
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Table 15. Map class-specific producer’s accuracy (PA) for each assessed map class, with poorly mapped 
classes first. Figures are taken from population contingency table. Asterisks indicate true values that are 
at least 90% confident to lie either fully above or below the 80% accuracy target. 

Class code and full name 
# of plots 

identified as 
PA 

estimate 
PA 90% conf 

interval 

S44–Thimbleberry shrubland, tall forbs and bracken fern 14 39%* 15–63% 

C05–Western hemlock, Douglas-fir and sword fern forest 12 65% 44–87% 

H58–Bedrock balds and sparsely vegetated forest openings 18 67% 47–87% 

C22–Subalpine larch woodland 45 70%* 61–78% 

C06–Western hemlock, Douglas-fir and salal forest 9 72% 43–100% 

C11–Mesic silver fir and western hemlock forest 13 72% 50–93% 

C15–Lodgepole pine and Douglas-fir woodland 24 72% 49–95% 

C12–Silver fir, hemlock and Alaska blueberry forest 12 73% 44–100% 

S48–Subalpine heather shrubland 43 73% 64–82% 

C10–Moist silver fir, western hemlock and foamflower forest 18 74% 59–89% 

C07–North Cascades dry Douglas-fir forest 17 74% 56–93% 

S40W–Low elevation shrub-dominated wetland 9 80% 49–100% 

C16–North Cascades Douglas-fir and subalpine fir woodland 36 76% 66–87% 

H53–Showy sedge and Sitka valerian meadow 27 78% 59–96% 

H52–Cow parsnip meadow 3 90% 58–100% 

B34–Bigleaf maple and Douglas-fir debris apron forest 26 82% 67–96% 

H54–Moist talus vegetation 16 86% 64–100% 

R72–Colluvial barren 55 83% 72–93% 

C13–Mountain hemlock, silver fir and Cascade azalea forest 30 83% 72–93% 

S42–Sitka willow riparian shrubland 17 83% 65–100% 

C14–Silver fir, big huckleberry and beargrass forest 12 88% 66–100% 

S49–Alpine heather shrubland 31 83% 72–95% 

C20–Subalpine fir and Sitka valerian forest and woodland 32 85% 72–97% 

C04–Moist western hemlock, Douglas-fir and foamflower forest 21 86% 70–100% 

B33–Upland red alder, bigleaf maple and conifer forest 20 87% 71–100% 

C25–North Cascades subalpine fir and whitebark pine woodland 16 88% 72–100% 

S47–Successional huckleberry shrubland 27 88% 76–100% 

B30–Successional gravel bar shrubland 7 95% 79–100% 

B35–Upland paper birch and conifer forest 11 94%* 81–100% 

S46–Snowbrush and Scouler's willow shrubland 33 91%* 82–100% 

C21–Mountain hemlock, subalpine fir and heather woodland 28 92%* 83–100% 

S41W–Subalpine willow wetland 15 95%* 83–100% 

H60W–Black alpine sedge wetland 3 100%* 83–100% 

H62–Alpine sparse herbaceous vegetation 24 93%* 85–100% 

C09–Ponderosa pine and Douglas-fir woodland 25 94%* 86–100% 
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Table 15 (continued). Map class-specific producer’s accuracy (PA) for each assessed map class, with 
poorly mapped classes first. Figures are taken from population contingency table. Asterisks indicate true 
values that are at least 90% confident to lie either fully above or below the 80% accuracy target. 

Class code and full name 
# of plots 

identified as 
PA 

estimate 
PA 90% conf 

interval 

H57–Green fescue dry meadow 27 94%* 87–100% 

R71–Alluvial barren and debris-covered ice 8 100%* 94–100% 

H50W–Lowland marsh and meadow 11 100%* 95–100% 

S43–Sitka alder shrubland 41 99%* 96–100% 

H51W–Subalpine herbaceous wetland 13 100%* 96–100% 

R73–Bedrock barren 13 100%* 96–100% 

C26–Conifer krummholz and treed cliff 16 100%* 97–100% 

S45–Vine maple shrubland 21 100%* 98–100% 

M92–Burned with uncertain vegetation 20 100%* 98–100% 

B31–Broadleaf riparian and swamp forest 22 100%* 98–100% 

 

Classes with accuracies less than the 80% target should be considered as candidates for merging with 
other classes (Lea and Curtis 2010). To assist with this task, Table 16 lists these classes as well as 
the classes with which each is confused. 

Table 16. Significantly confused map classes and the classes with which they are confused. For classes 
with user’s or producer’s accuracy less than 80%, all classes with which confusion exists are given with 
the proportion of the reached inference area (RIA) affected by confusion in either direction between the 
pair. 

Class code and abbreviated name 
Minimum 
(UA, PA) Confused with (proportion of RIA affected) 

S44–Thimbleberry, forbs & bracken fern 39% 
S45–Vine maple (0.26%) 
S46–Snowbrush & Scouler's willow (0.04%) 
H53–Showy sedge & Sitka valerian (0.02%) 

C05–W hemlock & sword fern 54% 

C07–N Casc dry Doug-fir (2.56%) 
C11–Mesic silver fir & w hemlock (1.00%) 
C15–Lodgepole pine & Doug-fir (0.50%) 
C06–W hemlock & salal (0.50%) 
C10–Moist silver fir & foamflower (0.30%) 

C25–N Casc subalp fir & whitebark pine 54% C22–Subalpine larch (1.17%) 

H54–Moist talus vegetation 56% 

S48–Subalpine heather (0.16%) 
H62–Alpine sparse herbaceous (0.08%) 
R71–Alluvial barren (0.06%) 
S47–Successional huckleberry (0.03%) 
S49–Alpine heather (0.03%) 
C21–Mtn hemlock & heather (0.03%) 
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Table 16 (continued). Significantly confused map classes and the classes with which they are confused. 
For classes with user’s or producer’s accuracy less than 80%, all classes with which confusion exists are 
given with the proportion of the reached inference area (RIA) affected by confusion in either direction 
between the pair. 

Class code and abbreviated name 
Minimum 
(UA, PA) Confused with (proportion of RIA affected) 

C12–Silver fir & Alaska blueberry 63% 

C11–Mesic silver fir & w hemlock (0.56%) 
C13–Mtn hemlock & Cascade azalea (0.48%) 
C21–Mtn hemlock & heather (0.15%) 
C16–N Casc Doug-fir & subalp fir (0.15%) 
C10–Moist silver fir & foamflower (0.15%) 

C14–Silver fir & big huckleberry 65% 

C16–N Casc Doug-fir & subalp fir (0.52%) 
C13–Mtn hemlock & Cascade azalea (0.11%) 
C20–Subalp fir & Sitka valerian (0.11%) 
C10–Moist silver fir & foamflower (0.11%) 

H58–Bedrock balds & forest openings 67% 
M92–Burned (0.55%) 
R72–Colluvial barren (0.08%) 
C15–Lodgepole pine & Doug-fir (0.08%) 

C07–N Casc dry Doug-fir 69% 

C05–W hemlock & sword fern (2.56%) 
C06–W hemlock & salal (0.39%) 
B35–Upland paper birch & conifer forest (0.29%) 
C15–Lodgepole pine & Doug-fir (0.11%) 
S45–Vine maple (0.09%) 

C22–Subalpine larch 70% 
C25–N Casc subalp fir & whitebark pine (1.17%) 
C20–Subalp fir & Sitka valerian (0.11%) 
S41W–Subalpine willow wetland (0.01%) 

B35–Upland paper birch & conifer forest 71% 
C07–N Casc dry Doug-fir (0.29%) 
B33–Upland bigleaf maple & conifer (0.23%) 
C04–Moist w hemlock & foamflower (0.15%) 

C06–W hemlock & salal 72% 
C05–W hemlock & sword fern (0.50%) 
C07–N Casc dry Doug-fir (0.39%) 
C15–Lodgepole pine & Doug-fir (0.32%) 

C11–Mesic silver fir & w hemlock 72% 

C05–W hemlock & sword fern (1.00%) 
C12–Silver fir & Alaska blueberry (0.56%) 
C04–Moist w hemlock & foamflower (0.41%) 
C10–Moist silver fir & foamflower (0.30%) 

C15–Lodgepole pine & Doug-fir 72% 

C05–W hemlock & sword fern (0.50%) 
C06–W hemlock & salal (0.32%) 
C09–Ponderosa pine & Doug-fir (0.22%) 
C07–N Casc dry Doug-fir (0.11%) 
H58–Bedrock balds & forest openings (0.08%) 

H51W–Subalpine herbaceous wetland 72% 

H53–Showy sedge & Sitka valerian (0.02%) 
H57–Green fescue dry meadow (0.01%) 
S48–Subalpine heather (0.01%) 
S41W–Subalpine willow wetland (0.01%) 
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Table 16 (continued). Significantly confused map classes and the classes with which they are confused. 
For classes with user’s or producer’s accuracy less than 80%, all classes with which confusion exists are 
given with the proportion of the reached inference area (RIA) affected by confusion in either direction 
between the pair. 

Class code and abbreviated name 
Minimum 
(UA, PA) Confused with (proportion of RIA affected) 

S48–Subalpine heather 73% 

S49–Alpine heather (0.29%) 
H54–Moist talus vegetation (0.16%) 
S47–Successional huckleberry (0.13%) 
H62–Alpine sparse herbaceous (0.05%) 
H53–Showy sedge & Sitka valerian (0.02%) 
H51W–Subalpine herbaceous wetland (0.01%) 

C20–Subalp fir & Sitka valerian 74% 

C13–Mtn hemlock & Cascade azalea (0.49%) 
C16–N Casc Doug-fir & subalp fir (0.42%) 
C04–Moist w hemlock & foamflower (0.19%) 
C14–Silver fir & big huckleberry (0.11%) 
S47–Successional huckleberry (0.11%) 
C22–Subalpine larch (0.11%) 
C21–Mtn hemlock & heather (0.11%) 
S43–Sitka alder (0.07%) 

C10–Moist silver fir & foamflower 74% 

C04–Moist w hemlock & foamflower (0.37%) 
C16–N Casc Doug-fir & subalp fir (0.34%) 
C05–W hemlock & sword fern (0.30%) 
C11–Mesic silver fir & w hemlock (0.30%) 
C13–Mtn hemlock & Cascade azalea (0.17%) 
C12–Silver fir & Alaska blueberry (0.15%) 
C14–Silver fir & big huckleberry (0.11%) 

H53–Showy sedge & Sitka valerian 74% 

H57–Green fescue dry meadow (0.13%) 
S43–Sitka alder (0.04%) 
S47–Successional huckleberry (0.04%) 
H51W–Subalpine herbaceous wetland (0.02%) 
S44–Thimbleberry, forbs & bracken fern (0.02%) 
H52–Cow parsnip (0.02%) 
S48–Subalpine heather (0.02%) 

C16–N Casc Doug-fir & subalp fir 76% 

B34–Bigleaf maple & Doug-fir debris apron (0.59%) 
C14–Silver fir & big huckleberry (0.52%) 
C20–Subalp fir & Sitka valerian (0.42%) 
C10–Moist silver fir & foamflower (0.34%) 
C04–Moist w hemlock & foamflower (0.19%) 
C12–Silver fir & Alaska blueberry (0.15%) 

S45–Vine maple 78% 

S44–Thimbleberry, forbs & bracken fern (0.26%) 
S42–Sitka willow riparian (0.09%) 
B33–Upland bigleaf maple & conifer (0.09%) 
C07–N Casc dry Doug-fir (0.09%) 
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Sample and population contingency tables were also constructed at the lifeform/land-use level by 
lumping each map class into a category based on its dominant vegetation; the results are in INR 
(2021a) and are summarized below in Table 17. All AA plots that successfully passed through the 
QC process were used, including those of the nine map classes excluded from the map class level 
analysis (these fell into the last five categories in the table). 

Table 17. Accuracy of map aggregated to lifeform/land-use level. Figures taken from population 
contingency table. Asterisks indicate true values that are at least 90% confident to lie either fully above or 
below the 80% accuracy target. 

Lifeform 
# of plots 

mapped as 
UA 

estimate 
UA 90% conf 

interval 
# of plots 

identified as 
PA 

estimate 
PA 90% conf 

interval 

Broadleaf tree 90 90%* 84–96% 86 93%* 87–99% 

Conifer 359 99%* 98–100% 367 98%* 97–99% 

Tall shrub 112 94%* 90–98% 112 96%* 91–99% 

Shrubland 120 97%* 94–100% 139 83%* 75–88% 

Herbaceous 160 85%* 80–90% 142 88%* 81–96% 

Water 36 97%* 91–100% 35 100%* 99–100% 

Rock 76 97%* 94–100% 76 97%* 92–100% 

Snow & ice 6 100%* 92–100% 7 73% 34–100% 

Developed 3 100%* 83–100% 3 100%* 83–100% 

Other disturbed 25 80% 65–95% 20 100%* 98–100% 

 

The user’s and producer’s accuracy estimates exceeded the 80% standard at 90% confidence for all 
natural land-use categories other than the SHRUBLAND producer’s accuracy, which did not achieve 
that level of confidence. The most significant lifeform mapping errors among natural vegetation were 
SHRUBLAND mapping as HERBACEOUS (S48–SUBALPINE HEATHER SHRUBLAND mapping as H54–
MOIST TALUS VEGETATION and S49–ALPINE HEATHER SHRUBLAND mapping as H62–ALPINE SPARSE 

HERBACEOUS VEGETATION), and BROADLEAF TREE mapping as CONIFER (B34–BIGLEAF MAPLE AND 

DOUGLAS-FIR DEBRIS APRON FOREST mapping as C16–NORTH CASCADES DOUGLAS-FIR AND 

SUBALPINE FIR WOODLAND and C09–PONDEROSA PINE AND DOUGLAS-FIR WOODLAND). The user’s 
accuracy estimate for OTHER DISTURBED—which included M92–BURNED WITH UNCERTAIN 

VEGETATION and M93–TIMBERLAND WITH UNCERTAIN VEGETATION—was borderline at 80%, 
primarily due to H58–BEDROCK BALDS AND SPARSELY VEGETATED FOREST OPENINGS mapping as 
M92–BURNED WITH UNCERTAIN VEGETATION. The producer’s accuracy estimate for SNOW & ICE was 
lower than 80%, though the sample size was small and it was not conclusively demonstrated to fail to 
meet the standard via the 90% confidence interval. The poor result was due to mapping of one W82–
EXPOSED SNOW AND ICE plot as R72–COLLUVIAL BARREN. 
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3.7. Discussion 
The accuracy assessment phase field observations are the reference by which the map’s accuracy is 
measured, but these observations are not infallible. Key decisions in the field regarding the extent of 
the vegetation types perceived, the locations of boundaries between them, and the cover occupied by 
the species present within each can vary between observers. The vegetation classification itself 
(Nielsen et al. 2021c, Nielsen and Brunner 2021) is a somewhat subjective entity, with few hard rules 
for discriminating classes other than the weight of statistical evidence from ocular data, which are 
incomplete for many AA plots. Observers may also disagree about the degree to which a text-based 
map class description matches a vegetation patch in the field. To borrow a term from taxonomy, the 
circumscriptions of the map classes and mapping associations may not be consistently understood 
and applied. In some cases, the accuracy assessment plot quality control process will have corrected 
for these inconsistencies; in other cases, not. 

The failure to meet inference area goals for most classes and the geographic bias toward areas of the 
park which we were able to reach limit the confidence we can attach to many of our conclusions. In 
these cases, Lea and Curtis (2010) warn that “extending the results of the thematic accuracy 
assessment from the inference area to the rest of the project must be justified by assumptions, rather 
than by statistical inference.” In the following discussion, we have supplemented the AA analysis 
with photo-interpretation and consideration of context, in an attempt to provide additional evidence 
and to make these assumptions as transparent as possible. 

3.7.1. Undersampled map classes 
Based on their mapped area, the assessed classes each require 30 samples of mapped occurrences. As 
documented in Table 13, this was only achieved for seven of the 45 classes. Several causes for this 
failure are described below. 

Eight of the 38 undersampled classes were rare (totaling less than 100 mapped hectares) in the 
reached inference area. These classes were typically concentrated in one or two parts of the RIA and 
even if the sampling goals had been achieved, autocorrelation amongst these plots in both floristics 
and mapping tendencies would have likely made their application to the full project area 
questionable. 

Five other classes (C26–CONIFER KRUMMHOLZ AND TREED CLIFF, S46–SNOWBRUSH & SCOULER'S 

WILLOW, H54–MOIST TALUS VEGETATION, H62–ALPINE SPARSE HERBACEOUS VEGETATION and R73–
BEDROCK BARREN) are very often located in inaccessible areas, either due to high elevations and 
steep slopes or to impenetrable vegetation. It is likely that field efficiency or safety concerns often 
resulted in crews skipping plots from these classes in order to maximize overall plot collection or 
stay on their itinerary. 

Of the remaining 25 undersampled classes, six had fewer than 15 mapped occurrences in the AA 
dataset. One of these, B35–UPLAND PAPER BIRCH & CONIFER FOREST, had not been targeted, due to 
changes in the map classification made between the time of AA sampling in 2016 and production of 
the final maps in 2019–20. Two pairs of map classes—C05–WESTERN HEMLOCK, DOUGLAS-FIR AND 

SWORD FERN FOREST and C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL FOREST, and C10–
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MOIST SILVER FIR, WESTERN HEMLOCK AND FOAMFLOWER FOREST and C11–MESIC SILVER FIR AND 

WESTERN HEMLOCK FOREST—had been split from one another between the time of AA sampling and 
production of the final map. The 30 samples targeted in each original map class were divided 
between the pairs of final classes. In addition, four plots targeted for the first pair wound up mapping 
as C07–NORTH CASCADES DRY DOUGLAS-FIR FOREST instead, and four targeted for the second pair 
mapped as C12–SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST in the final map. The impacts 
of these classification changes, as well as five unreached plots in each of the original classes, resulted 
in the four final classes falling substantially short of sampling goals. Finally, an oversight resulted in 
the creation of only 15 targets for R71–ALLUVIAL BARREN AND DEBRIS-COVERED ICE, and several of 
these were impacted by channel migration between the draft and final map image dates, resulting in 
shifts to B30–SUCCESSIONAL GRAVEL BAR SHRUBLAND or W81–FRESH WATER. 

The above classification changes—and many others—were made in order to address challenges of 
mapping and field identification. While the goals of these updates were achieved, they had the by-
product of reducing the number of AA plots available for assessing the final classes. An ideally 
executed project would have deferred AA fieldwork until completion of the final map—or at least 
map classification—but project management concerns took precedence here. For many map classes, 
the sample sizes are too small to confidently assess whether the 80% accuracy standard was 
achieved, as reflected in the wide confidence intervals seen in Table 14 and Table 15. The small 
sample sizes should be kept in mind when considering the mapping error rates discussed below. 

3.7.2. Map classes failing to meet accuracy standards 
A list of the map classes failing to meet accuracy standards, the classes they are most confused with, 
and a possible corrective action that could be taken (if any) are shown in Table 18. Since every area 
of the map must be labeled, the only corrective action we consider is that of merging confused 
classes. This is likely to result in overall improvements only if the classes to be merged are confused 
primarily with each other. Otherwise, any poorly mapping area will simply get attributed into a 
different bin, perhaps bringing a different class below the accuracy target. We first review the 
apparent mapping errors for which merging classes does not appear to be an option. 

Table 18. Map classes failing to meet accuracy standards or confused with those classes. ‘+’ indicates 
accuracy estimates of 80% or higher; asterisks indicate accuracy less than 80% at 90% confidence. The 
classes accounting for the most mismapped area are listed under “confusion with,” along with the fraction 
contributed to the total mismapped area in parentheses. A possible corrective action is noted for each. 

Class code and abbreviated name UA % PA % Confusion with Corrective action 

C04–Moist w hemlock & foamflower + + C11 (31%), C10 (29%) – 

C05–W hemlock & sword fern 54 65 C07 (53%), C11 (21%) consider merge with C07 

C06–W hemlock & salal + 72 C05 (41%), C07 (32%) none, no reciprocity 

C07–N Casc dry Doug-fir 69 74 C05 (74%) consider merge with C05 

C10–Moist silver fir & foamflower + 74 C04 (21%), C16 (20%) none, no reciprocity 

C11–Mesic silver fir & w hemlock + 72 C05 (44%), C12 (25%) none, no reciprocity 

C12–Silver fir & Alaska blueberry 63 73 C11 (37%), C13 (32%) none, no reciprocity 
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Table 18 (continued). Map classes failing to meet accuracy standards or confused with those classes. ‘+’ 
indicates accuracy estimates of 80% or higher; asterisks indicate accuracy less than 80% at 90% 
confidence. The classes accounting for the most mismapped area are listed under “confusion with,” along 
with the fraction contributed to the total mismapped area in parentheses. A possible corrective action is 
noted for each. 

Class code and abbreviated name UA % PA % Confusion with Corrective action 

C13–Mtn hemlock & Cascade azalea + + C20 (37%), C12 (36%) – 

C14–Silver fir & big huckleberry 65 + C16 (60%) none, no reciprocity 

C15–Lodgepole pine & Doug-fir + 72 C05 (41%), C06 (26%) none, no reciprocity 

C16–N Casc Doug-fir & subalp fir + 76 B34 (26%), C14 (23%) consider merge with B34 

C20–Subalp fir & Sitka valerian 74 + C13 (30%), C16 (26%) none, no reciprocity 

C22–Subalpine larch + 70* C25 (91%) consider merge with C25 

C25–N Casc subalp fir & whitebark pine 54* + C22 (100%) consider merge with C22 

B34–Bigleaf maple & Doug-fir debris apron + + C16 (54%), S46 (22%) consider merge with C16 

B35–Upland paper birch & conifer forest 71 + C07 (44%), B33 (35%) none, no reciprocity 

S44–Thimbleberry, forbs & bracken fern + 39* S45 (82%) consider merge with S45 

S45–Vine maple 78 + S44 (50%) consider merge with S44 

S48–Subalpine heather + 73 S49 (44%), H54 (24%) consider merge with S49 

S49–Alpine heather + + S48 (56%), H62 (30%) consider merge with S48 

H51W–Subalpine herbaceous wetland 72 + H53 (40%), H57 (20%) none, no reciprocity 

H53–Showy sedge & Sitka valerian 74 78 H57 (45%) consider merge with H57 

H54–Moist talus vegetation 56* + S48 (42%), H62 (21%) none, no reciprocity 

H57–Green fescue dry meadow + + H53 (69%), S49 (25%) consider merge with H53 

H58–Bedrock balds & forest openings + 67 M92 (78%) consider merge with M92 

M92–Burned + + H58 (80%) consider merge with H58 

 

Map classes for which merging is not a viable option 
No remedy is possible for the following apparent mapping errors, due to non-reciprocity of errors 
within the confused classes. The classes are considered in order of decreasing severity. Asterisks 
indicate estimates that are 90% confident to lie either above or below the 80% accuracy target; all 
other estimates given are not statistically significant with respect to the target. Recommendations to 
NPS are given in boldface. 

H54–MOIST TALUS VEGETATION (UA 56%*, PA 86%) at least occasionally maps over76 several other 
alpine and subalpine map classes—especially S48–SUBALPINE HEATHER SHRUBLAND and H62–
ALPINE SPARSE HERBACEOUS VEGETATION—but the sample is geographically biased. Although H54 is 
mapped throughout the park, the AA plots all lay within a narrow range, and nearly all the incorrect 

 
76 In this terminology, “X maps over Y” means that class X was repeatedly mapped in locations where class Y was 
discovered on the ground. “Y is mapped over by X” would be an equivalent formulation. 
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samples were located in Fisher Creek Basin. The user’s accuracy in the four other areas where the 
class was sampled was 87%. It seems likely that geographic bias in training data led to poor mapping 
in Fisher Creek Basin. We recommend NPS make additional effort to verify the mapping of moist, 
protected talus vegetation in other areas of the park.77 

C12–SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST (UA 63%, PA 73%) has some two-way 
confusion78 with C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST and C13–MOUNTAIN 

HEMLOCK, SILVER FIR AND CASCADE AZALEA FOREST, and also sometimes maps over several other 
montane and upper montane conifer forest types. There appears to be no geographic pattern to the 
error. This class occurs in intermediate settings, with the best call often influenced by spotty 
distributions of indicator tree species and understory variability in response to fine scale patterns of 
soil moisture. In floristically intermediate areas, we recommend that NPS regard mosaics of small 
mapped forest patches as indicating the proportions in which several vegetation types may be 
represented locally, rather than always seeking a fine-scale spatial correspondence. 

C14–SILVER FIR, BIG HUCKLEBERRY AND BEARGRASS FOREST (UA 65%, PA 88%) maps over C16–
NORTH CASCADES DOUGLAS-FIR AND SUBALPINE FIR WOODLAND and several other somewhat moister 
upper montane classes. However, most of the errors are confined to a small area along the McAlester 
trail below Stiletto Peak, and in other places C16 maps over C14 instead. C14 is spottily distributed 
in the park, and the AA plots were confined to a very narrow geographic portion of its distribution. 
The C14 plots in the complex are good fits to the dry montane forest association Abies amabilis-
Pseudotsuga menziesii/Vaccinium membranaceum and are floristically distinct from C16. However, 
it is possible that not enough plots are available to model the class well. 

B35–UPLAND PAPER BIRCH AND CONIFER FOREST (UA 71%, PA 94%*) maps over C07–NORTH 

CASCADES DRY DOUGLAS-FIR FOREST on two plots separated by just 300 meters above Ruby Creek. 
B35 often occurs as broadleaf tree openings in C07 forest, and appears to have been mapped here 
where Acer circinatum, rather than Betula papyrifera, is the main broadleaf component in gaps 
between conifers. B35 also has some two-way confusion with B33–UPLAND RED ALDER, BIGLEAF 

MAPLE AND CONIFER FOREST above the lower Skagit River. While east-side occurrences of B35 are 
clearly distinct from B33, they intergrade on the west side. Although B33 is strongly associated with 
areas recovering from logging on the pre-dam Skagit floodplain, the toe slopes just above were not 
well sampled in our training data and there may be areas intermediate between B33 and B35 there.  

C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST (UA 82%, PA 72%) is mapped over by C05–
WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN FOREST in two different locations. One of the 
plots may indicate a significant under-mapping of C11 near Little Beaver Creek as it is well lower 
than the current mapped range. These can be difficult classes as they are both frequently depauperate 

 
77 If the problem is found elsewhere, a revised map using additional training plots—using these AA plots and 
perhaps PI plots—would likely resolve the problem. INR could produce this easily. 
78 i.e., each of the types occasionally maps over the other. 
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and must often be distinguished mainly based on prominence of Abies amabilis, which can vary over 
fine spatial scales. C11 also has some general confusion with various moist montane map classes. 

C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL FOREST (UA 88%, PA 72%) is mapped over by 
C05–WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN FOREST and C07–NORTH CASCADES DRY 

DOUGLAS-FIR FOREST at one plot each, on the eastern edge of its mapped range. It may be generally 
under-mapped on the west side of Ross Lake. It is not possible to assess the western part of the 
mapped range of C06 due to lack of plots in that area. 

C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND (UA 88%, PA 72%) may be slightly under-
mapped, with one plot each mapped as C05–WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN 

FOREST, C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL FOREST and H58–BEDROCK BALDS AND 

SPARSELY VEGETATED FOREST OPENINGS. The two former plots both had very low cover of Pinus 
contorta, and the latter was a very sparse woodland. All had C15 mapped in adjacent areas. C15 also 
mapped at two plots identified as C09–PONDEROSA PINE AND DOUGLAS-FIR WOODLAND on the east 
side of Ross Lake, where very little C09 was mapped. Only a small amount of Pinus ponderosa was 
present. All of these plots were intermediate in species composition. 

H51W–SUBALPINE HERBACEOUS WETLAND (UA 72%, PA 100%*) appears to be over-mapped, based 
on errors in three distinct regions. Two H53–SHOWY SEDGE AND SITKA VALERIAN MEADOW plots, one 
km apart in the same drainage, were mapped as H51W, and a single plot each of two other upland 
subalpine map classes were also. One plot was floristically intermediate to H51W, and all the 
mismapped plots were near streams and/or wetland areas. It appears that inaccuracies in the available 
topographic data may have resulted in models that project H51W to occasionally extend somewhat 
further above drainages than it should. 

C20–SUBALPINE FIR AND SITKA VALERIAN FOREST AND WOODLAND (UA 74%, PA 85%) appears to be 
over-mapped, particularly into difficult floristic areas that lack Abies lasiocarpa, but are not a clear 
fit to any other type. It maps over four plots called to C16–NORTH CASCADES DOUGLAS-FIR AND 

SUBALPINE FIR WOODLAND, three of them near lower McAlester Creek above Bridge Creek, at lower 
elevations than typical for C20. All these plots contain significant Picea engelmannii and no Abies 
lasiocarpa, and are generally not a good fit to any map class. C20 also maps over three plots called to 
C13–MOUNTAIN HEMLOCK, SILVER FIR AND CASCADE AZALEA FOREST. Two of these were on the 
western side of the C20 distribution around Cascade Pass and Park Creek Pass. Despite their lack of 
Abies lasiocarpa, their understories were intermediate to C20. Another C13 plot, south of McAlester 
Pass, also had significant Picea engelmannii. To a lesser extent, C20 is mapped over by several other 
map classes, in various areas. For the most part, the poor mapping results for C20 appear to reflect 
difficulties with the classification, particularly in areas with Picea engelmannii but lacking Abies 
lasiocarpa. 

C10–MOIST SILVER FIR, WESTERN HEMLOCK AND FOAMFLOWER FOREST (UA 85%, PA 74%) appears to 
be under-mapped, at least in NPSS. Of the eight plots where it was found but not mapped, six were in 
NPSS, including two in the upper Thunder Creek drainage, one on the North Fork Cascade River, 
two neighboring plots on North Fork Bridge Creek, and one on the main stem of Bridge Creek. The 
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under-mapping appears to be most notable in the Stehekin watershed, where C10 is mapped only in 
widely scattered small patches. These three plots mapped as C16–NORTH CASCADES DOUGLAS-FIR 

AND SUBALPINE FIR WOODLAND, C04–MOIST WESTERN HEMLOCK, DOUGLAS-FIR AND FOAMFLOWER 

FOREST, and C14–SILVER FIR, BIG HUCKLEBERRY AND BEARGRASS FOREST. The plots were all 
intermediate and atypical in character; nothing like them had been encountered during training data 
collection despite fairly dense sampling in the region. Although C10 is under-mapped here, the errors 
likely are restricted to very particular locales and don’t affect a very large area. 

Map classes for which merging may be a viable option 
There are seven groups of map classes that could conceivably be aggregated for improved accuracy, 
based on this analysis. They are considered below in order of decreasing severity of the apparent 
mapping issue they would address. Asterisks indicate estimates that are 90% confident to lie either 
above or below the 80% accuracy target; all other estimates given are not statistically significant with 
respect to the target. Recommendations to NPS are given in boldface. 

S44–THIMBLEBERRY SHRUBLAND, TALL FORBS AND BRACKEN FERN (UA 83%, PA 39%*) and S45–
VINE MAPLE SHRUBLAND (UA 78%, PA 100%*) could be merged; the combined class S44+S45 
would have UA 87% and PA 99%*. S44’s low PA79 is primarily due to confusion with S45 in the 
north part of the park. In that region, S44 typically occurs on toe slopes below S45, with an 
intermediate zone where they intermingle. Very few of these areas were accessible for sampling, so 
these conclusions were drawn entirely from plots along Little Beaver Creek and Brush Creek. Three 
heterogeneous and/or floristically ambiguous plots there were called to S44 but mapped as S45. In 
the southeast part of the park, areas upslope of S44 are usually S43–SITKA ALDER SHRUBLAND, S46–
SNOWBRUSH AND SCOULER'S WILLOW SHRUBLAND or S47–SUCCESSIONAL HUCKLEBERRY SHRUBLAND. 
There, S44 is confused primarily with S46, not with S45. Although S44 does appear to be under-
mapped in the north, the plots are fairly ambiguous and the very distinct set of neighboring map 
classes in the southern part of its distribution argue for keeping S44 and S45 distinct. We recommend 
the classes be kept separate, with the caveat that S44 appears to be under-mapped in NPSN, where 
it may be erroneously labeled as S45. We also recommend that NPS additionally investigate the 
mapping of toe-slope shrublands in the northwestern part of the park, many of which are difficult 
to access. 

C05–WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN FOREST (UA 54%, PA 65%) and C07–
NORTH CASCADES DRY DOUGLAS-FIR FOREST (UA 69%, PA 74%) could be merged; the combined 
class C05+C07 would have UA 83% and PA 93%*. Six plots have two-way confusion between these 
classes, although both classes are confused with other classes on five additional plots (C05 with 
C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST and others, C07 with B35–UPLAND PAPER 

BIRCH AND CONIFER FOREST and others). Of the six mislabeled plots, three are within a few meters of 
a mapped transition to the other type. Of the other three, two are intermediate in floristics. C07 is 
generally restricted to within 5–7 km of Ross Lake, while C05 is mapped across the park outside the 

 
79 Note that S44’s PA from the sample contingency table is a much more reasonable 71%. The low population 
contingency table result is due to the much greater extent over which S45 is mapped. 
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Stehekin watershed, though it is also most abundant around Ross Lake. Near Ross Lake, they are 
generally mapped in large patches (500 meters or more across) segregated by aspect. We recommend 
the classes be kept separate, because the mislabeled plots don’t provide strong evidence, and C05 is 
for the most part a west-side forest type, while C07 is a distinctly east-side type. The area around 
Ross Lake is transitional between the two, and some ambiguity is inevitable. In broad floristic 
transitional areas, we recommend that NPS regard alternating map patches of the same vegetation 
structure as a sign of floristics generally intermediate between the types. 

C25–NORTH CASCADES SUBALPINE FIR AND WHITEBARK PINE WOODLAND (UA 54%*, PA 88%) and 
C22–SUBALPINE LARCH WOODLAND (UA 94%*, PA 70%*) could be merged; the combined class 
C22+C25 would have UA 100%* and PA 98%*. Both classes are primarily confused with the other, 
and the AA plots are not ambiguous. While the general habitat of the two classes is very similar and 
they frequently occur in close proximity, C25 is mapped on warmer and drier aspects, on steeper 
slopes, and at slightly higher elevations than C22. In several areas—south of Stiletto Peak, on 
Rainbow Ridge and around Rainbow Lake, around Rennie Peak—C25 maps over C22, perhaps 
extending farther downslope, into lusher vegetation on gentler terrain, than it should. Considering the 
fairly strong model which discriminates the classes (well-balanced, with 11.9% average error and 42 
predictors), the poor AA result is strange. The training plots for C22 tended to have lusher 
understories than many of the AA plots where it was found but mapped as C25. It may also be that 
the environmental niche varies with geography, as most of the incorrectly mapped AA plots were 
located a half-kilometer or farther from training plots. It is possible that the model simply wasn’t 
trained sufficiently. NPS may want to merge these classes, given the large improvement in 
accuracy it would allow. However, we have left them as is, because Larix lyallii may be of 
management interest, the classes have clear floristic differences, and we believe the AA 
overestimates the amount of confusion and that the mapping quality varies in different areas.80 

H58–BEDROCK BALDS AND SPARSELY VEGETATED FOREST OPENINGS (UA 88%, PA 67%) and M92–
BURNED WITH UNCERTAIN VEGETATION (UA 80%, PA 100%*) could be merged; the combined class 
H58+M92 would have UA 93%* and PA 100%*. Both classes are primarily confused with the other. 
All four plots are at balds that have burned forests surrounding them. In all cases H58 was modeled, 
but the area was recoded to M92 during post-processing. The errors resulted in the comparatively 
low spatial resolution of the satellite-based change detection process that was used to detect burned 
areas; the change detected in the surrounding burned forests bled over into the balds where little 
actual change had occurred. This is a particularly challenging error because many of the balds at the 
park occur in a matrix with forests that are subject to frequent fire. We recommend the classes be 
kept separate. Although unburned balds are certainly frequently mapped as burned forests within 
recent fire perimeters, that is not a reason to give up on mapping balds throughout the park. 

S48–SUBALPINE HEATHER SHRUBLAND (UA 96%*, PA 73%) and S49–ALPINE HEATHER SHRUBLAND 
(UA 81%, PA 83%) could be merged; the combined class S48+S49 would have UA 98%* and PA 

 
80 Because the poor results in several areas reflect an inadequacy of training data in those areas, a revised map using 
these AA plots as additional training would likely result in substantial improvements. INR could produce this easily. 
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85%. S49 maps over S48 on five plots, and the reverse happens on one plot. While this represents a 
slight majority of the problem plots for S49, S48 is equally confused with H54–MOIST TALUS 

VEGETATION, and is occasionally mapped over by other classes as well. The confused S48/S49 plots 
are not floristically ambiguous, but all but one are within 20 meters of a mapped transition to the 
correct type. Given the significantly different types that each class is confused with, and their 
usefulness in delineating the subalpine/alpine transition, we recommend the classes be kept 
separate. 

H53–SHOWY SEDGE AND SITKA VALERIAN MEADOW (UA 74%, PA 78%) and H57–GREEN FESCUE DRY 

MEADOW (UA 92%*, PA 94%*) could be merged; the combined class H53+H57 would have UA 
88%* and PA 96%*. Three plots are mislabeled between this pair; this is only a quarter of the 
problem plots for H53. One of them is floristically ambiguous, and two are within 20 meters of a 
mapped transition to the correct type. These classes can be intermeshed at fine scale depending on 
soil texture and slight changes in drainage pattern, though modal occurrences are quite distinct. We 
recommend the classes be kept separate. 

C16–NORTH CASCADES DOUGLAS-FIR AND SUBALPINE FIR WOODLAND (UA 83%, PA 76%) and B34–
BIGLEAF MAPLE AND DOUGLAS-FIR DEBRIS APRON FOREST (UA 85%, PA 82%) could be merged; the 
combined class C16+B34 would have UA 91%* and PA 85%. Four plots are mislabeled between this 
pair; this is only a quarter of the problem plots for C16. Of the four, two are floristically ambiguous, 
and one of the others is 25 meters from a mapped transition to the correct type. There does not appear 
to be much to be gained by merging these classes, whose modal occurrences are quite distinct. We 
recommend the classes be kept separate. 

3.7.3. Other known mapping issues 
We observed several other mapping issues that will likely be noticed from time to time. Further 
investigation of these issues by NPS may be warranted. 

H62–ALPINE SPARSE HERBACEOUS VEGETATION was mapped at three plots that were field-identified as 
S49–ALPINE HEATHER SHRUBLAND. Each of the plots was within ten meters of denser S49 that was 
mapped correctly. It appears that this error is fairly common in sparser occurrences of S49 (which 
varies widely in density and appearance). This is an understandable mistake as Phyllodoce 
empetriformis, Cassiope mertensiana and Luetkea pectinata are among the most dominant plants in 
both S49 and H62. Apart from a few indicators that are often absent, H62 is generally distinguished 
from S49 by the sparseness of its vegetation. It does appear that the map may begin to show H62 at a 
higher level of vegetation cover than would be ideal. 

R73–BEDROCK BARREN was mapped at three plots that were field-identified as R72–COLLUVIAL 

BARREN. Many areas of talus at NOCA have essentially weathered in place and occur in 
geomorphological settings more similar to bedrock than typical talus slopes below cliffs. This may be 
the primary source of this error, in addition to possible inconsistency of discriminating the classes in 
training data.  
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4. Vegetation of North Cascades National Park Complex 
4.1. Vegetation map 
The vegetation map (Figure 20, and a higher-resolution version at Nielsen et al. 2021d) illustrates 
the distribution of the 51 map classes across the park complex and surrounding buffer. The map 
contains nearly 470 million pixels aggregated into patches of no less than nine 3-meter pixels (81 
m2). The estimated area of each class, based on its mapped area modified by the correction factor 
from the AA population contingency table, is shown in Table 19. The map classes vary widely in 
abundance, with most of them limited in extent. The most common eight classes collectively occupy 
half the complex, while 21 classes cover less than 1% each. M93–TIMBERLAND WITH UNCERTAIN 

VEGETATION is absent in the park, though it is present immediately adjacent in several areas; it is not 
shown in the table. 
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Figure 20. Vegetation map of North Cascades National Park Complex. 
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Table 19. Map class estimated area and proportion of park complex, listed by area. 

Class code and full name 
Est area in 

complex (ha) 
Est area in 

complex (ac) 
Proportion of 
complex (%) 

R73–Bedrock barren 31,627 78,152 11.46 

C21–Mountain hemlock, subalpine fir and heather woodland 20,210 49,940 7.32 

R72–Colluvial barren 18,337 45,312 6.65 

C13–Mountain hemlock, silver fir and Cascade azalea forest 17,795 43,972 6.45 

S43–Sitka alder shrubland 13,940 34,446 5.05 

C11–Mesic silver fir and western hemlock forest 13,633 33,688 4.94 

C05–Western hemlock, Douglas-fir and sword fern forest 11,868 29,326 4.30 

C12–Silver fir, hemlock and Alaska blueberry forest 9,114 22,521 3.30 

W82–Exposed snow and ice 9,007 22,257 3.26 

C10–Moist silver fir, western hemlock and foamflower forest 8,687 21,466 3.15 

W81–Fresh water 8,128 20,085 2.95 

C16–North Cascades Douglas-fir and subalpine fir woodland 7,876 19,462 2.85 

M92–Burned with uncertain vegetation 7,030 17,371 2.55 

S48–Subalpine heather shrubland 6,888 17,021 2.50 

C26–Conifer krummholz and treed cliff 6,746 16,670 2.44 

S45–Vine maple shrubland 6,443 15,921 2.33 

C20–Subalpine fir and Sitka valerian forest and woodland 6,063 14,982 2.20 

C07–North Cascades dry Douglas-fir forest 5,523 13,648 2.00 

C22–Subalpine larch woodland 5,315 13,134 1.93 

C06–Western hemlock, Douglas-fir and salal forest 4,808 11,881 1.74 

C15–Lodgepole pine and Douglas-fir woodland 4,641 11,468 1.68 

S49–Alpine heather shrubland 4,603 11,374 1.67 

H62–Alpine sparse herbaceous vegetation 4,527 11,186 1.64 

H58–Bedrock balds and sparsely vegetated forest openings 4,260 10,527 1.54 

S46–Snowbrush and Scouler's willow shrubland 3,974 9,820 1.44 

C09–Ponderosa pine and Douglas-fir woodland 3,816 9,430 1.38 

C04–Moist western hemlock, Douglas-fir and foamflower forest 3,373 8,335 1.22 

R71–Alluvial barren and debris-covered ice 2,964 7,324 1.07 

S47–Successional huckleberry shrubland 2,839 7,015 1.03 

B34–Bigleaf maple and Douglas-fir debris apron forest 2,489 6,150 0.90 

C25–North Cascades subalpine fir and whitebark pine woodland 2,310 5,708 0.84 

B35–Upland paper birch and conifer forest 2,098 5,184 0.76 

H57–Green fescue dry meadow 1,969 4,865 0.71 

H54–Moist talus vegetation 1,848 4,567 0.67 

B31–Broadleaf riparian and swamp forest 1,782 4,403 0.65 

B33–Upland red alder, bigleaf maple and conifer forest 1,711 4,228 0.62 
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Table 19 (continued). Map class estimated area and proportion of park complex, listed by area. 

Class code and full name 
Est area in 

complex (ha) 
Est area in 

complex (ac) 
Proportion of 
complex (%) 

S42–Sitka willow riparian shrubland 1,603 3,961 0.58 

C14–Silver fir, big huckleberry and beargrass forest 1,377 3,403 0.50 

H53–Showy sedge and Sitka valerian meadow 1,308 3,232 0.47 

S44–Thimbleberry shrubland, tall forbs and bracken fern 1,006 2,486 0.36 

S40W–Low elevation shrub-dominated wetland 363 897 0.13 

M95–Roads in park 332 820 0.12 

B30–Successional gravel bar shrubland 328 811 0.12 

H60W–Black alpine sedge wetland 295 729 0.11 

M96–Cleared corridors 238 588 0.09 

S41W–Subalpine willow wetland 230 568 0.08 

H51W–Subalpine herbaceous wetland 215 531 0.08 

H50W–Lowland marsh and meadow 145 358 0.05 

H52–Cow parsnip meadow 141 348 0.05 

M94–Development 119 294 0.04 

 

4.2. Vegetation overview 
The map classes can be broadly broken into ten groups based on their dominant lifeform and land-
use characteristics: (a) conifer-dominated, (b) broadleaf tree-dominated, (c) tall shrublands, (d) 
shrublands and dwarf-shrublands, (e) herbaceous vegetation, (f) rock barrens, (g) exposed snow and 
ice, (h) water, (i) natural and semi-natural disturbed landscapes (including burned and logged areas), 
and (j) development. A map made by merging map classes into these groups is shown in Figure 21, 
and the relative abundance of map classes within each group is illustrated by Figure 22.
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Figure 21. Lifeform map of North Cascades National Park Complex. 
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Figure 22. Relative abundance of map classes, grouped by lifeform/land-use category. 
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Analysis of the distribution patterns of plant species provides a more fundamental (but also more 
detailed and complex) way of understanding vegetation patterns in the park. Table 20 lists the most 
common species documented in the training plots, as well as other species that are key components 
of the mapped vegetation classes. Complete floristics tables are provided in INR (2021b). 

Table 20. Common species in plots and other important species discussed in the text. Frequency in full-
ocular training plots is given and ranked relative to all other species. Elevation zones (L=lowland, 
LM=lower montane, UM=upper montane, S=subalpine, A=alpine) with which species are most associated 
are marked with an ‘X.’ Bullets ‘•’ indicate zones of less common but still notable occurrence. Zones 
where the species is not appreciably present are indicated by ‘–.‘ Scientific names follow Hitchcock and 
Cronquist (2018); species are listed alphabetically. INR (2021b) has a complete list. 

Scientific name Common name Frequency Rank L LM UM S A 

Abies amabilis silver fir 33.0% 4 • X X • – 

Abies grandis grand fir 4.7% 121 X – – – – 

Abies lasiocarpa subalpine fir 32.5% 5 – • X X X 

Acer circinatum vine maple 24.9% 8 X • – – – 

Acer glabrum Rocky Mountain maple 14.6% 27 X X • – – 

Acer macrophyllum bigleaf maple 11.1% 49 X – – – – 

Alnus rubra red alder 5.8% 100 X – – – – 

Alnus viridis Sitka alder 9.9% 76 • X X – – 

Amelanchier alnifolia western serviceberry 21.2% 13 X X X – – 

Arctostaphylos nevadensis pinemat manzanita 6.8% 88 X X X • – 

Arnica latifolia broad-leaved arnica 14.5% 28 – – X X – 

Athyrium distentifolium alpine lady fern 4.9% 118 – – X – X 

Athyrium filix-femina lady fern 14.4% 30 X X – – – 

Berberis nervosa dwarf Oregon-grape 17.0% 20 X • – – – 

Betula papyrifera paper birch 3.3% 160 X – – – – 

Calamagrostis rubescens pinegrass 14.4% 31 X X X – – 

Callitropsis nootkatensis Alaska-cedar 15.5% 22 – • X X • 

Carex aquatilis water sedge 0.7% 310 X – – X – 

Carex nigricans black alpine sedge 6.1% 97 – – – X X 

Carex spectabilis showy sedge 9.5% 68 – – – X X 

Cassiope mertensiana white mountain-heather 13.8% 35 – – – • X 

Ceanothus velutinus snowbrush 7.4% 87 X X – – – 

Chamaenerion angustifolium fireweed 16.6% 21 • X X X – 

Chimaphila umbellata pipsissewa 18.6% 17 X X X – – 

Clintonia uniflora queen’s cup 15.0% 25 • X X – – 

Cornus stolonifera, C. occidentalis red-osier dogwood 6.2% 96 X • – – – 

Cryptogramma acrostichoides American parsley fern 9.6% 67 X • X • X 

Eremogone capillaris mountain sandwort 11.2% 48 – – • X X 
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Table 20 (continued). Common species in plots and other important species discussed in the text. 
Frequency in full-ocular training plots is given and ranked relative to all other species. Elevation zones 
(L=lowland, LM=lower montane, UM=upper montane, S=subalpine, A=alpine) with which species are 
most associated are marked with an ‘X.’ Bullets ‘•’ indicate zones of less common but still notable 
occurrence. Zones where the species is not appreciably present are indicated by ‘–.‘ Scientific names 
follow Hitchcock and Cronquist (2018); species are listed alphabetically. INR (2021b) has a complete list. 

Scientific name Common name Frequency Rank L LM UM S A 

Festuca viridula green fescue 10.9% 51 – – • X – 

Gaultheria shallon salal 5.1% 115 X • – – – 

Goodyera oblongifolia rattlesnake-plantain 22.3% 12 X X X – – 

Heracleum maximum cow parsnip 4.1% 132 – X – • – 

Larix lyallii subalpine larch 6.3% 92 – – – X – 

Linnaea borealis twinflower 15.4% 24 X X • – – 

Lomatium brandegeei Brandegee's biscuitroot 7.6% 81 – – X X – 

Luetkea pectinata partridgefoot 18.8% 16 – – • X X 

Lupinus latifolius subalpine lupine 20.3% 14 – – • X • 

Luzula piperi Piper's woodrush 4.8% 120 – – – – X 

Micranthes tolmiei Tolmie's saxifrage 4.2% 131 – – – – X 

Orthilia secunda one-sided wintergreen 20.3% 15 • X X – – 

Paxistima myrsinites Oregon-box 40.0% 3 X X X X • 

Phlox diffusa spreading phlox 10.1% 59 – – • X X 

Phyllodoce empetriformis pink mountain-heather 23.2% 9 – – • X X 

Picea engelmannii Engelmann spruce 11.6% 43 – • X X – 

Pinus albicaulis whitebark pine 9.2% 70 – – • X X 

Pinus contorta lodgepole pine 7.5% 84 • X • – – 

Pinus monticola western white pine 8.1% 76 X X X – – 

Pinus ponderosa ponderosa pine 5.6% 104 X – – – – 

Populus trichocarpa black cottonwood 5.2% 112 X – – – – 

Potentilla flabellifolia fan-leaf cinquefoil 6.2% 94 – – – X • 

Prunus emarginata bitter cherry 5.3% 110 X X • – – 

Pseudotsuga menziesii Douglas-fir 41.9% 2 X X • – – 

Rubus leucodermis whitebark raspberry 3.8% 139 X • – – – 

Rubus nutkanus thimbleberry 14.9% 26 X X • – – 

Rubus spectabilis salmonberry 11.5% 45 X X – – – 

Salix commutata undergreen willow 1.7% 218 – – – X – 

Salix scouleriana fire willow 12.2% 41 • X X – – 

Salix sitchensis Sitka willow 3.8% 139 X X – – – 

Sambucus racemosa red elderberry 10.9% 50 X X – – – 
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Table 20 (continued). Common species in plots and other important species discussed in the text. 
Frequency in full-ocular training plots is given and ranked relative to all other species. Elevation zones 
(L=lowland, LM=lower montane, UM=upper montane, S=subalpine, A=alpine) with which species are 
most associated are marked with an ‘X.’ Bullets ‘•’ indicate zones of less common but still notable 
occurrence. Zones where the species is not appreciably present are indicated by ‘–.‘ Scientific names 
follow Hitchcock and Cronquist (2018); species are listed alphabetically. INR (2021b) has a complete list. 

Scientific name Common name Frequency Rank L LM UM S A 

Senecio integerrimus tall western groundsel 6.3% 93 – – • X – 

Sorbus sitchensis Sitka mountain-ash 18.5% 18 – – X X – 

Spiraea douglasii rose spirea 1.2% 181 X X – – – 

Spiraea lucida white spirea 14.5% 29 X X X – – 

Spiraea splendens mountain spirea 2.8% 169 – – X X – 

Struthiopteris spicant deer fern 3.8% 137 X X • – – 

Taxus brevifolia Pacific yew 8.6% 73 X X – – – 

Thuja plicata western redcedar 26.5% 7 X X – – – 

Tiarella trifoliata foamflower 13.9% 34 X X X – – 

Tsuga heterophylla western hemlock 28.8% 6 X X • – – 

Tsuga mertensiana mountain hemlock 22.7% 10 – – X X • 

Vaccinium deliciosum Cascade blueberry 22.4% 11 – – • X X 

Vaccinium membranaceum big huckleberry 42.1% 1 • • X X – 

Vaccinium ovalifolium Alaska blueberry 13.8% 36 • X X – – 

Vaccinium parvifolium red huckleberry 15.4% 23 X X – – – 

Valeriana sitchensis Sitka valerian 17.5% 19 – – X X – 

 

The distribution patterns of the most important species and map classes within each of the 
lifeform/land-use categories are discussed below.81 For purposes of discussion, we treat natural 
abiotic areas (including rock barrens, snow and ice, and water) as a single unit, and we treat wetlands 
as a separate unit, despite lumping them by their dominant lifeform in the lifeform map. As above, 
area estimates are based on the mapped area modified by the correction factor from the AA 
population contingency table. Species occurrence frequencies are relative to the full-ocular training 
plot dataset. 

4.2.1. Conifers 
The dry summers and relatively warm winters of the Pacific Northwest favor the development of 
coniferous forest as the climax lifeform where local conditions permit. Conifer-dominated vegetation 
is the most abundant lifeform in the complex, covering nearly half the landscape, accounting for one-
third of the map classes, and ranging from stately low elevation forests to snow-sculpted krummholz 
clinging to rocky ridges. The classes are evenly distributed across elevation zones: lowland forests 

 
81 The map class descriptions (Nielsen et al. 2021c) contain greater detail about the species composition, habitat and 
distribution associated with each map class. 
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cover 11% of the complex, lower montane forests occupy 10%, upper montane forests 13%, and 
subalpine woodlands 12%. Krummholz and treed cliffs occupy only 2.5%. The seventeen species of 
conifers are supplanted by other vegetation only where disturbance, snowpack, saturated soils or lack 
of soil development prevent their establishment and persistence. 

West side 
Lowland forests 

The pioneer species Douglas-fir (Pseudotsuga menziesii) and the shade-tolerant western hemlock 
(Tsuga heterophylla) dominate west-side lowland conifer forests. Douglas-fir is found in most parts 
of the park; it is the most abundant tree in the plot dataset and the second most abundant plant 
overall. Given enough light availability for establishment, it can thrive at all but the highest 
elevations and is absent only at the wettest sites. Western hemlock is the major successional tree in 
west-side lowland forests and extends up through the montane zone. These species, with lesser 
amounts of western redcedar (Thuja plicata), contribute most of the overstory to the map classes 
C05–WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN FOREST, C06–WESTERN HEMLOCK, 
DOUGLAS-FIR AND SALAL FOREST and, in moister settings, C04–MOIST WESTERN HEMLOCK, DOUGLAS-
FIR AND FOAMFLOWER FOREST. Other lowland conifer forest associates, none of which are normally 
more than prominent, include western white pine (Pinus monticola), grand fir (Abies grandis) and the 
small understory tree Pacific yew (Taxus brevifolia). Dwarf Oregon-grape (Berberis nervosa) and red 
huckleberry (Vaccinium parvifolium) are prominent in the understory of most lowland conifer stands 
except in the moistest settings, where foamflower (Tiarella trifoliata) is omnipresent in a lush mixed 
understory. Dense successional forests often have very sparse understories, sometimes limited to 
scattered rattlesnake plantain (Goodyera oblongifolia) and pipsissewa (Chimaphila umbellata). 
Vancouverian species such as salal (Gaultheria shallon) and deer fern (Struthiopteris spicant) are 
significantly less common at NOCA than in the other NCCN parks. 

Montane forests 
The lower montane zone is characterized by codominance of silver fir (Abies amabilis) with western 
hemlock. Entry to this zone is marked by increased canopy prominence of silver fir, the primary 
successional species throughout all but the driest of mid-elevation forests. C10–MOIST SILVER FIR, 
WESTERN HEMLOCK AND FOAMFLOWER FOREST occurs on valley bottoms and moist toe slopes, while 
higher and drier slopes are occupied by C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST. 
Alaska blueberry (Vaccinium ovalifolium) is a dominant understory species in many lower montane 
stands and is especially abundant in wet-mesic settings where it is usually joined by foamflower and 
queen’s cup (Clintonia uniflora). Mesic mid-slope stands are often composed of dense silver fir with 
sparse understories of scattered one-sided wintergreen (Orthilia secunda). 

Upper montane forests are transitional to the subalpine zone above. Here, the high elevation species 
mountain hemlock (Tsuga mertensiana), subalpine fir (Abies lasiocarpa) and Alaska-cedar 
(Callitropsis nootkatensis) become prominent in closed forests dominated by silver fir. The lush 
C12–SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST is transitional from the lower montane, 
with high elevation tree species usually subordinate to silver fir, western hemlock and/or Douglas-fir. 
At higher elevations, it gives way to the very abundant C13–MOUNTAIN HEMLOCK, SILVER FIR AND 
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CASCADE AZALEA FOREST. Alaska-cedar is regularly prominent and occasionally codominant in the 
west-side upper montane, showing a preference for wetter forests, especially those regenerated after 
avalanche disturbance. The most common species in the park, big huckleberry (Vaccinium 
membranaceum) is the dominant understory species in the upper montane zone, and is equally 
prominent on the west and east sides. 

Subalpine forests and woodlands 
The most abundant conifer class, C21–MOUNTAIN HEMLOCK, SUBALPINE FIR AND HEATHER 

WOODLAND, signals the entry to the subalpine zone upslope of C13–MOUNTAIN HEMLOCK, SILVER FIR 

AND CASCADE AZALEA FOREST. It is extensive on upper slopes and shoulders of west-side mountain 
ridges. At yet higher elevations, heavy snow accumulation limits the growth of conifers other than 
C26–CONIFER KRUMMHOLZ AND TREED CLIFF in exposed locations where wind sweeps it clear. 

East side 
Lowland forests 

Patterns differ east of the Cascade crest, though one constant is Douglas-fir, which is perhaps even 
more prominent on the east side. As a drought-tolerant pioneer species, it has a particular advantage 
here where fire return intervals are shorter. C07–NORTH CASCADES DRY DOUGLAS-FIR FOREST is 
abundant around Ross Lake, especially on south-facing lower slopes. Ponderosa pine (Pinus 
ponderosa) is often codominant with Douglas-fir at the low elevations in the Stehekin Valley, where 
C09–PONDEROSA PINE AND DOUGLAS-FIR WOODLAND is the most abundant conifer type. Understories 
on the east side include many components of the more continental East Cascades and Rocky 
Mountain floras that are rare or absent on the west side and at other NCCN parks. Widespread 
examples in lowland forests include white spirea (Spiraea lucida) and pinegrass (Calamagrostis 
rubescens). 

Montane forests 
The lower montane zone is essentially eliminated in the southeast, squeezed between lowland forests 
and the upper montane zone. However, dry bedrock benches and ridgelines in this elevation zone 
above the middle Skagit and around Ross Lake often host lodgepole pine (Pinus contorta) in C15–
LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND. Otherwise, lower montane forests around Ross Lake 
are generally similar to west-side types. 

The upper montane zone is reached quickly on the east side, as shade-intolerant subalpine fir extends 
to lower elevations here. Although C16–NORTH CASCADES DOUGLAS-FIR AND SUBALPINE FIR 

WOODLAND shares importance with the west-side mountain hemlock map classes around Ross Lake, 
it becomes the primary upper montane type in the Stehekin, where mountain hemlock becomes 
limited to particularly moist sites. The third most common species in the park, Oregon-box 
(Paxistima myrsinites), is a dominant understory species across many east-side conifer forest types, 
and also is prominent in a variety of higher elevation shrublands and meadows. 

Subalpine forests and woodlands 
Subalpine fir is by far the dominant species in east-side subalpine forests and woodlands, although it 
is very prominent in drier west-side subalpine woodlands as well. The most widespread east-side 
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subalpine class is C20–SUBALPINE FIR AND SITKA VALERIAN FOREST AND WOODLAND, which is found 
on middle to upper slopes at all but the most sheltered north-facing sites. Dry woodlands above 
that—especially on steep south- and west-facing slopes in the southeast—are dominated by 
whitebark pine (Pinus albicaulis) and subalpine larch (Larix lyallii). Subalpine larch is found on 
somewhat moister sites in C22–SUBALPINE LARCH WOODLAND, while whitebark pine is found in the 
driest and most exposed sites where C25–NORTH CASCADES SUBALPINE FIR AND WHITEBARK PINE 

WOODLAND prevails amongst rock outcrops. Engelmann spruce (Picea engelmannii) is a frequent but 
rarely dominant associate found throughout the east-side upper montane and subalpine zones. 
Continental flora elements in the understories of east-side subalpine forests and woodlands include 
Brandegee’s biscuitroot (Lomatium brandegeei) and tall western groundsel (Senecio integerrimus). 

4.2.2. Broadleaf trees 
Communities dominated by deciduous broadleaf trees are a distinguishing feature of disturbed areas 
and occupy three percent of the complex. They occur on valley bottom floodplains, in sites 
recovering from fire or logging, and on toe slopes habitually impacted by mass movement. 

Floodplains 
The colonization phase of floodplain successional dynamics is represented by B30–SUCCESSIONAL 

GRAVEL BAR SHRUBLAND. The dominant woody plants in these communities are red alder (Alnus 
rubra), black cottonwood (Populus trichocarpa), and Sitka willow (Salix sitchensis). Red alder is 
increasingly rare on the east side; riparian broadleaf stands along the Stehekin are usually dominated 
by black cottonwood. Without repeated disturbance, these successional shrublands mature into B31–
BROADLEAF RIPARIAN AND SWAMP FOREST. Salmonberry (Rubus spectabilis), red elderberry 
(Sambucus racemosa) and lady fern (Athyrium filix-femina) are common and abundant understory 
components in these forests. 

Uplands 
Bigleaf maple (Acer macrophyllum) is the most common deciduous species in the complex and is 
present in lower elevation upland areas throughout. It is a dominant in two broadleaf forest classes. 
B33–UPLAND RED ALDER, BIGLEAF MAPLE AND CONIFER FOREST often represents recovery from 
logging disturbance and is also common on west-side debris aprons. It is present on lower slopes, toe 
slopes, and in the logged and hydrologically modified floodplain of the Skagit River below the Gorge 
Dam. B34–BIGLEAF MAPLE AND DOUGLAS-FIR DEBRIS APRON FOREST is the east-side analogue and is 
especially abundant on toe slopes along the Stehekin River and its tributaries. Paper birch (Betula 
papyrifera) is found on sites that have been disturbed by fire or mass movement, and is especially 
abundant around Ross Lake. B35–UPLAND PAPER BIRCH AND CONIFER FOREST captures these mixed 
broadleaf-conifer patches, which are often embedded in C07–NORTH CASCADES DRY DOUGLAS-FIR 

FOREST. 

4.2.3. Upland tall shrubs 
Tall shrublands in uplands cover nine percent of the complex, occupying avalanche tracks, montane 
talus slopes, riparian benches, toe-slope debris aprons, and east-side slopes recovering from fire. 



 

108 
 

Avalanches and mass movement 
Avalanches tend to impact the same slopes year after year, carving out chutes through montane and 
subalpine forests. The regular disturbances favor resilient and rapidly resprouting shrubs rather than 
tall and brittle trees. Sitka alder (Alnus viridis) bends rather than breaks when walloped by snow, and 
thrives in avalanche zones and moist talus. Although the species is not extremely common in the 
dataset, it is generally dominant where it occurs, and S43–SITKA ALDER SHRUBLAND is the most 
abundant non-forest vegetation type in the complex. Red elderberry, salmonberry and lady fern are 
common associates. 

Other tall shrubland classes occur on avalanche toe slopes, where Sitka alder gives way to a variety 
of other shrub species. Often found just above large streams and rivers, S42–SITKA WILLOW RIPARIAN 

SHRUBLAND forms dense thickets that are codominated by Sitka willow, Sitka alder and red-osier 
dogwood (Cornus sericea) with a mix of moisture-loving forbs from lowlands and middle elevations. 
Drier talus and avalanche toe slopes host S45–VINE MAPLE SHRUBLAND, in which vine maple (Acer 
circinatum) is often joined by young bigleaf maple and a variety of smaller shrubs and herbaceous 
plants. These sites have strong floristic similarities to B33–UPLAND RED ALDER, BIGLEAF MAPLE AND 

CONIFER FOREST. Vine maple is also very common in the understory of lowland conifer forests. 

Fire recovery 
Fire willow (Salix scouleriana), snowbrush (Ceanothus velutinus) and bitter cherry (Prunus 
emarginata) form considerable patches where they have resprouted after fire. S46–SNOWBRUSH AND 

SCOULER’S WILLOW SHRUBLAND covers east-side midslopes for years following intense fire, 
gradually transitioning into forested patches which reflect the spatial distribution of disturbance. 
Western serviceberry (Amelanchier alnifolia) frequently joins these species and also ranges widely 
across other dry woodlands and shrublands, usually at low cover. 

4.2.4. Upland shrublands 
Shorter shrublands in uplands cover nearly six percent of the complex, exploiting disturbance in the 
montane zone and exposed areas with poor soil development at higher elevations. The lowest 
elevation shrublands are on lower montane toe slopes with thimbleberry (Rubus nutkanus) and an 
assortment of tall forbs; these are mapped as S44–THIMBLEBERRY SHRUBLAND, TALL FORBS AND 

BRACKEN FERN. At higher elevations, above the elevation range of S46–SNOWBRUSH AND SCOULER’S 

WILLOW SHRUBLAND, areas dominated by a mix of big huckleberry, Cascade blueberry (Vaccinium 
deliciosum), mountain spirea (Spiraea splendens) and Sitka mountain-ash (Sorbus sitchensis) are 
scattered through the upper montane and subalpine zones. These successional shrublands, mapped as 
S47–SUCCESSIONAL HUCKLEBERRY SHRUBLAND, typically occur between forests and subalpine 
meadows, and are often associated with recovery from fire. 

The iconic mountain-heather shrublands of the subalpine and alpine zones are dominated by pink 
mountain-heather (Phyllodoce empetriformis), white mountain-heather (Cassiope mertensiana) and 
Cascade blueberry. These are particularly prominent on the shoulders of west-side ridges. S48–
SUBALPINE HEATHER SHRUBLAND is found just above C21–MOUNTAIN HEMLOCK, SUBALPINE FIR AND 

HEATHER WOODLAND, but there is a substantial transition zone in which the two classes mosaic at a 
scale of 10–20 meters, resulting in an extensive landscape of tree islands and heather openings. 
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Succession toward mountain hemlock is usually evident in these areas. A gradual transition to S49–
ALPINE HEATHER SHRUBLAND is evident with increasing elevation and exposure. This class is 
characterized by more compact vegetation with considerably fewer forbs, increased abundance of 
white mountain-heather, and reduced abundance of Cascade blueberry. 

4.2.5. Upland herbaceous vegetation 
Lingering snowpack, low temperatures, desiccating winds and repeated disturbance create conditions 
under which only herbaceous plants can survive. A diverse assortment of upland herbaceous plant 
communities—including lush forb meadows, rocky graminoid meadows and sparse alpine cushion 
plants—share five percent of the complex. Herbaceous communities often transition across short 
distances, responding to finer-scale changes in topography, substrate and soil moisture than adjacent 
forests. 

Lower elevations 
The lowest elevation herbaceous communities in the complex occur in forest openings on bedrock-
limited soils and are mapped as H58–BEDROCK BALDS AND SPARSELY VEGETATED FOREST OPENINGS. 
They are found throughout the complex but are especially abundant in the Stehekin Valley and 
around Ross Lake. The abundant east-side balds are distinct from those elsewhere in the NCCN; 
although we have generally treated the map class as herbaceous, here they are usually dominated by 
dwarf shrubs, especially pinemat manzanita (Arctostaphylos nevadensis). Openings in lower montane 
forests may also occur on toe slopes, where herbaceous communities with cow parsnip (Heracleum 
maximum) and other tall forbs persist due to habitual disturbance from landslides and avalanche 
runouts. These meadows, H52–COW PARSNIP MEADOW, are limited in extent and usually occur in a 
mosaic with S44–THIMBLEBERRY SHRUBLAND, TALL FORBS AND BRACKEN FERN, discussed above. 

Higher elevations 
Lush meadows of subalpine lupine (Lupinus latifolius), Sitka valerian (Valeriana sitchensis), showy 
sedge (Carex spectabilis) and other herbaceous species are mapped as H53–SHOWY SEDGE & SITKA 

VALERIAN MEADOW. Found throughout the park but more abundant on the moist west side, they are 
often found in and around C20–SUBALPINE FIR AND SITKA VALERIAN FOREST AND WOODLAND. In 
rocky areas, this community frequently grades into H54–MOIST TALUS VEGETATION, which typically 
occurs as patches of alpine lady fern (Athyrium distentifolium) and diverse forbs within protected and 
often sub-irrigated portions of talus slopes. Exclusively alpine plants such as Piper’s woodrush 
(Luzula piperi) and Tolmie’s saxifrage (Micranthes tolmiei) are joined by partridgefoot (Luetkea 
pectinata), which ranges through a variety of subalpine and alpine communities, to form H62–
ALPINE SPARSE HERBACEOUS VEGETATION. This is the most abundant herbaceous map class in the 
complex—though again more abundant on the west side—and is found on rocky upper slopes where 
snow lingers late into the growing season. 

Smaller amounts of snow accumulation on the east side limit the extent of the preceding classes, 
though H54–MOIST TALUS VEGETATION still takes advantage of moist pockets within talus. The 
dominant high-elevation herbaceous class here is H57–GREEN FESCUE DRY MEADOW, which occurs in 
large expanses on south-facing slopes and is also found in fine mosaics with C22–SUBALPINE LARCH 

WOODLAND and C25–NORTH CASCADES SUBALPINE FIR AND WHITEBARK PINE WOODLAND. These dry 
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meadows are characterized by green fescue (Festuca viridula), mountain sandwort (Eremogone 
capillaris), and spreading phlox (Phlox diffusa). 

4.2.6. Wetlands 
One-half of one percent of the complex is mapped as one of the five wetland map classes. Low-
gradient areas conducive to wetland formation are mostly limited to lowland valleys and high-
elevation headwaters basins, often where glaciers have carved out flat-bottomed cirques. There are 
riparian communities and occasional mid-slope seeps in the intermediate montane zones, but few 
large wetlands. 

Lowlands 
Lowland herbaceous wetlands, mapped as H50W–LOW ELEVATION HERBACEOUS WETLAND, are 
usually dominated by water sedge (Carex aquatilis) and other graminoids and often occur along pond 
and lake margins. In larger valleys such as the Big Beaver, Little Beaver, and Thunder Creek 
Valleys, they form dynamic complexes with S40W–LOW ELEVATION SHRUB SWAMP wetlands 
dominated by Sitka willow and rose spirea (Spiraea douglasii), and with swampy B31–BROADLEAF 

RIPARIAN AND SWAMP FOREST. Herbaceous wetlands around ponds and lakes may be ringed by a 
shrub wetland and limited to a narrow strip between that and the water. Beaver activity is important 
in creating and maintaining many of these wetlands, which are more abundant farther north in the 
park, but are scattered in the Stehekin Valley as well. 

Subalpine and alpine 
Herbaceous subalpine wetlands, mapped as H51W–SUBALPINE HERBACEOUS WETLAND, usually have 
prominent fan-leaf cinquefoil (Potentilla flabellifolia) and black alpine sedge (Carex nigricans) with 
a range of other forbs and sedges. These wetlands are found throughout the high elevations on cirque 
floors and in other headwaters basins. Wetlands in similar environments but dominated by dense 
patches of undergreen willow (Salix commutata) are especially abundant in the rain shadow and are 
mapped as S41W–SUBALPINE WILLOW WETLAND. The two types often form mosaics, with undergreen 
willow wetlands adjacent to low-gradient streams and surrounded by herbaceous wetlands. Dense 
turfy patches of black alpine sedge and other sedges, usually with prominent partridgefoot, occur 
throughout the alpine zone in depressions holding snow beds or collecting melt from above. These 
perched wetlands are mapped as H60W–BLACK ALPINE SEDGE WETLAND; patches are often inclusions 
within subalpine or alpine heather shrublands, with rock barrens usually nearby. 

4.2.7. Natural abiotic areas 
Unvegetated natural areas are extensive in the complex, cumulatively occupying over a quarter of the 
landscape. R73–BEDROCK BARREN and R72–COLLUVIAL BARREN are the first and third most 
abundant single classes, covering eleven and seven percent of the complex respectively, while R71–
ALLUVIAL BARREN AND DEBRIS-COVERED ICE occupies only one percent. Although most of these 
barrens may entirely lack vascular plants, many include diverse sparse vegetation. The most common 
vascular plant species in barrens as a group are Tolmie's saxifrage, American parsley fern 
(Cryptogramma acrostichoides) and whitebark raspberry (Rubus leucodermis). W82–EXPOSED SNOW 

AND ICE and W81–FRESH WATER each cover about three percent, the latter consisting primarily of 
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Ross Lake (the dammed upper Skagit Valley) and the northern portion of Lake Chelan (a glacially 
carved basin). 

4.2.8. Natural and semi-natural disturbed landscapes 
Nearly three percent of the complex is mapped as M92–BURNED WITH UNCERTAIN VEGETATION. 
These are areas that have experienced severe fire in the last 35 years but do not resemble any of the 
fire-adapted map classes discussed above. They were not well-sampled in our fieldwork; vegetation 
cover is likely low and probably consists of a variety of early successional plants, including fireweed 
(Chamaenerion angustifolium). 

4.2.9. Development 
Roads, cleared corridors and developed areas cumulatively occupy 0.3% of the complex, almost 
entirely in the Highway 20 corridor. 

4.3. Influence of disturbance 
The USNVC and the mapping classification are best developed for stable climax and late seral 
vegetation types, but disturbances are a major driver of vegetation composition in the complex. Post-
disturbance trajectories may follow consistent patterns of vegetation colonization or recovery 
represented in the classification, but also may result in unique combinations of species that do not fit 
the classification well. Both scenarios are discussed below. 

Fire is the predominant cause of vegetation disturbance in the complex, affecting tens of thousands of 
acres each decade on average. Recent notable burns include the upper Skagit fires (2016), the 
Goodell and Wolverine fires (2015), the Lone Mountain fire (2014), the Big Beaver fires (2013) and 
the Flick Creek fire near Stehekin (2006). Sites burned within the last 35 years that do not resemble 
typical post-fire vegetation classes are mapped as M92–BURNED WITH UNCERTAIN VEGETATION. 
Variability in pre-fire vegetation, fire severity, and propagule availability result in diverse recovery 
pathways, limiting our capability to map these areas with more specificity. 

Avalanches represent another important agent of change. They periodically shatter tree trunks, 
favoring shorter and more flexible tall shrub plant communities along their established paths. These 
communities, which repeat regularly across the upper and lower montane zones, are mapped as S43–
SITKA ALDER SHRUBLAND and S45–VINE MAPLE SHRUBLAND. The less severe impacts in adjacent 
areas result in less consistent outcomes that are difficult to predict or map. The outer flanks of 
avalanche tracks often contain battered conifer forests with variable understories, and concentrated 
debris deposition zones in avalanche runouts often feature a haphazard and opportunistic mix of 
subalpine plants displaced from above with montane plants from nearby. Species composition in 
these areas varies from site to site and would not be easily placed in any classification. 

Periodic flooding occurs along the wild rivers and streams in the park. Rivers in the lower valleys 
regularly change course, washing away established forests and over time resulting in a patchwork of 
even-aged broadleaf forests and older conifer-dominated forests. Less destructive flooding can kill 
standing trees or bury the understory in cobbles, leading to atypical plant communities that are not 
captured in the classification. In the absence of continued flooding, abandoned channels, banks, and 
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bars are eventually colonized and follow trajectories toward climax conifer forests. Colonizing 
woody plants and their herbaceous associates often show consistent floristics, which we map as B30–
SUCCESSIONAL GRAVEL BAR SHRUBLAND, but a wide variety of species are possible depending on 
propagule availability, substrate and water table depth. West-side drainages are especially susceptible 
to flooding when warm spring storms rapidly melt deep snowpacks in the montane zone. The 
mainstem of the Skagit River is an exception, due to the construction of hydroelectric dams which 
have curtailed flooding in the lower valley and resulted in a shift toward older riparian forests. 

Glaciers are found perched on benches carved into the sides of high rocky peaks. Though imposing, 
they have receded significantly, both over the Holocene (Osborn et al. 2012, Beget 1984) and much 
more recently (Pelto 2017). They have left lakes in their wakes, scoured bedrock benches, and piled 
unsorted glacial till in moraines of various ages. The vegetation (or lack thereof) on these landforms 
depends on age, climate, water table and propagule availability. Older moraines host subalpine plant 
communities such as S48–SUBALPINE HEATHER SHRUBLAND or even conifer forests. Younger 
moraines are less likely to host a cohesive plant community and are instead dominated by a 
smattering of whatever nearby plant species happen to get a toehold. These early seral assemblages 
are often dissimilar to all map classes, but are mapped as their best match: for alpine moraines, this is 
often S49–ALPINE HEATHER SHRUBLAND or H62–ALPINE SPARSE HERBACEOUS VEGETATION. 

We created several map classes to account for land cover types not treated in the associations: areas 
significantly disturbed by fire or logging, and developed and agricultural land within the park and 
adjacent mapped areas. These land cover types were not inventoried either due to access issues or 
because they do not contain native vegetation represent significant conservation value. Although they 
cannot be described floristically, they were mapped to general land-cover/land-use categories to 
prevent gaps in the map coverage. The most abundant of these types within the complex are recently 
burned areas; these are discussed above. 

Protective legislation and inaccessibility prevented clearcutting in most areas prior to the 
establishment of the National Park Complex. Nonetheless, some forest stands within the current 
boundary had been harvested, most notably in the lower Stehekin Valley and in the Skagit Valley 
below the current Gorge Dam. This included logging up the walls of the Skagit and selective removal 
of western redcedar in lower Skagit tributaries. The upper Skagit was significantly logged prior to 
damming (Luxenberg 1986), but that area is now submerged beneath Ross Lake and those logged 
patches are not apparent in the vegetation map. Regenerated cuts within the park are handled well by 
the association-level classification. More recently logged areas outside the park boundary that could 
not be confidently assigned to one of the other map classes were coded as M93–TIMBERLAND WITH 

UNCERTAIN VEGETATION. Atypical conditions are found in these areas due to forest management 
practices such as replanting and the use of herbicides to suppress growth of deciduous trees and 
shrubs (Washington DNR 2018). 

M94–DEVELOPMENT includes developed sites within the park including visitor centers, housing, and 
maintenance facilities. It also includes the community of Newhalem, hydroelectric infrastructure, as 
well as various farmed, residential, and industrial lands outside the park. M96–CLEARED CORRIDORS 
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represents vegetation management and removal under power lines and along the international border. 
Park roads are mapped as M95–ROADS IN PARK. 

4.4. Guidelines for map use 
Before using the map products, users should thoroughly review both the map class descriptions and 
the accuracy assessment. The map represents existing vegetation as of summer 2015, although it may 
reflect the impacts of disturbance occurring before August 11, 2017. Vegetation patches smaller than 
500 m2 may not appear in the map; patches smaller than 90 m2 are definitely not captured. Narrow 
ribbon-like artifacts may be present near transitions between distinct lifeforms. In order to capture 
real vegetation that occurs in elongated slender patches, we did not aggressively filter these artifacts. 

For some map uses, the fine floristic distinctions between our map classes will likely be unnecessary. 
We’ve provided some guidance on merging map classes into dominant lifeform groups, but likely 
other combinations will be useful. When combining map classes into broader categories (e.g. silver 
fir forests, mountain-heather dwarf-shrublands), consider floristic similarity, spatial proximity (e.g., 
“are the classes typically found adjacent on the ground?”), and confusion (e.g., “how confused are 
the classes in the accuracy assessment?”). 

Planning of management or monitoring activities based on the vegetation map should always 
incorporate a consideration of the assessed accuracy of the map classes involved. Whether user’s or 
producer’s accuracy is a more appropriate metric depends on the issue. If a monitoring study requires 
field sampling within a map class, the class user’s accuracy should be considered before sending 
crews to randomly generated locations. For map classes with lower user’s accuracies, additional steps 
should be taken—at a minimum, examining recent aerial imagery—to ensure the sample locations 
are indeed occupied by the target class. On the other hand, the practicality of delineating the spatial 
bounds of a vegetation type is a function of the class producer’s accuracy. Map classes with low 
producer’s accuracy are not mapped in many places where they are present, so their distribution will 
be less clear. In some cases, an application might require consideration of the full population 
contingency table. For instance, an assessment of the impacts of a mapped disturbance event on 
habitat availability would need to estimate the fractional composition of map classes in the disturbed 
area. Although a simple summary based on the mapped classes would be easy, a better approach 
might be to apply area estimate corrections based on the population contingency table, as was done to 
estimate map class extents for Table 19.  
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