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Executive Summary 
The Vegetation Mapping Inventory (VMI) is an effort by the National Park Service (NPS) to 
classify, describe, and map vegetation communities present on NPS units across the United States. 
The Institute for Natural Resources, working in cooperation with the NPS North Coast and Cascades 
Network (NCCN), has completed a VMI project for the vegetation communities of Mount Rainier 
National Park (MORA). 

The map is based on a vegetation classification developed during the project and was created using 
an inductive modeling approach. Data used to construct the classification were collected between 
2005 and 2015 and included plots from Olympic National Park and North Cascades National Park 
Complex. These plots were used to develop and refine the association-level National Vegetation 
Classification (NVC). The associations were combined into map classes based roughly on the NVC 
alliance-level classification, but updated to allow improved map detail and accuracy. Model training 
data relied only on plots from MORA, collected during the same years. Independent field accuracy 
assessment data were collected in 2011, supplemented in 2014 and 2019, and applied to the final map 
generated later. 

The map development process was organized around the random forests machine learning algorithm. 
The modeling used 1,900 plots representing 124 vegetation associations and 37 map classes. Imagery 
from the National Agriculture Imagery Program and the Sentinel-2 and Landsat 8 satellites, airborne 
lidar bare earth and canopy height data, elevation data from the U.S. Geological Survey 3D Elevation 
Program, and climate normals from the PRISM Climate Group were used to develop a variety of 
predictor metrics. The predictors and the map class calls at each plot were input to a process in which 
each map class was modeled against every other map class in a factorial random forests scheme. We 
used the plot-level modeling outcomes and species composition data to adjust the crosswalk between 
association and map class so that floristic consistency and model accuracy were jointly optimized 
across all classes. The map was produced by predicting the factorial models and selecting the overall 
best-performing class at each 3-meter pixel. 

The final vegetation map, including a buffer surrounding the park, contains 33 natural vegetated 
classes, five mostly unvegetated natural classes, and four classes representing burned areas or 
anthropogenic disturbance. Coniferous forests and woodlands cover about three-fifths of the park. 
Upper montane forest codominated by silver fir (Abies amabilis), mountain hemlock (Tsuga 
mertensiana) and/or Alaska-cedar (Callitropsis nootkatensis) is the most abundant forest zone by far. 
Lower montane forest dominated by silver fir and western hemlock (Tsuga heterophylla), and 
subalpine forest and woodland dominated by subalpine fir (Abies lasiocarpa) and mountain hemlock 
are about equally abundant. Lowland forest dominated by Douglas-fir (Pseudotsuga menziesii) and 
western hemlock is more limited, covering less than ten percent of the park. Each of the forest zones 
are found throughout the park in appropriate habitat, but subalpine types are most abundant in the 
northeastern park quadrant and lowland forests are associated primarily with the lower 
Ohanapecosh/Cowlitz, Carbon and Nisqually river valleys. Broadleaf and mixed forests occupy less 
than two percent of the park, mainly near major rivers, and often in an early successional state 



 

xi 
 

following disturbance by flooding. Shrublands cover nine percent, mostly as high-elevation 
mountain-heather, post-fire successional shrublands and tall shrubs in avalanche tracks. Herbaceous 
vegetation occupies just over five percent, mainly in lush subalpine and sparse alpine meadows. 
Sparsely vegetated and entirely bare rock, especially colluvial deposits, cover thirteen percent of the 
park, and exposed snow and ice occupy eight percent. Lake and river surfaces round out most of the 
remaining two percent. 

The accuracy assessment (AA) was based on 761 independent field-collected plots representing all 
the vegetated classes, as well as alluvial, colluvial and bedrock barrens, which also often host 
vegetation communities. They were gathered from an inference area covering 6.9% of the park. The 
overall map accuracy based on this sample was 86.9%. After correcting for map class prevalence in 
the inference area, the overall accuracy was 83.3%. Six of the 35 classes evaluated in the AA failed 
to meet the 80% NPS standard for user’s accuracy; seven fell short of the standard for producer’s 
accuracy. The AA discussion in the report contains a review of all classes failing to meet either 
standard, considers possible remedies for each, and provides recommendations to NPS for possible 
modifications of the map in response to the issues identified. 

Many new methodologies for mapping and floristic analysis were developed during this project. 
These innovations were also applied in mapping the other large NCCN national parks. In addition to 
allowing the development of this series of maps, these methods should be useful to the NCCN and 
VMI for other mapping projects and purposes. Products resulting from this project include (a) this 
report, (b) the report supplements listed above, (c) a geodatabase with map polygon attributes, plot 
locations, and project boundaries, (d) training and accuracy assessment plot field forms and data, 
including ground photography, (e) hard copy vegetation maps and (f) metadata for digital products. 
Geospatial products are provided in the Universal Transverse Mercator (UTM) Zone 10 projection 
using the North American Datum of 1983.
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Glossary  
accuracy assessment Statistical analysis to determine the degree to which a map correctly 

represents on-the-ground conditions. 
accuracy assessment plots Field plots collected during the third major phase of field sampling, 

used as ground truth in the AA. 
attempted inference area The spatial region within which plots were targeted in the AA sample 

design. 
classification plots Field plots collected during the first major phase of field sampling, 

used to define the initial vegetation associations (Crawford et al. 
2009). Supplemented by the mapping plots, they were also used to 
define the mapping associations and map classes, and to create model 
training data. 

commission error The frequency with which a map specifies the presence of a class 
where it is not actually present. 

contingency table An AA error matrix documenting the extent of class-specific 
confusion between mapped and ground-truth data (often called a 
“confusion matrix”). 

floristic similarity The degree of species composition resemblance between two plots, 
associations or map classes. 

full-ocular plot A field sample including reasonably complete species cover data. 
inductive model A predictive representation of reality built from provided examples. 
Landsat Mid-resolution U.S. remote sensing satellites, active from 1972–

present. The Landsat data used were at 30-meter resolution. 
lidar Light detection and ranging; a laser-based technology for measuring 

elevation. 
map classes The thematic units to which map polygons are labeled; formed by 

merging similar mapping associations. 
mapping associations The fundamental classification units on which the map classes and 

therefore the NCCN maps are based; formed by revising the NVC 
associations (Crawford et al. 2009, Ramm-Granberg et al. 2021) for 
increased floristic and modeling consistency. 

mapping plots Field plots collected during the second major phase of field sampling. 
Supplemented by the classification plots, they were used to define the 
mapping associations and map classes, and to create model training 
data. 

minimum mapping unit The smallest homogeneous area intended for representation in the 
map; for this project, nominally 500 square meters (0.05 hectares). 

modeling similarity The susceptibility of two plots, associations or map classes to 
incorrect labeling in inductive modeling; in other words, their degree 
of similarity in predictor data. 
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nested texture metrics A method for extracting multi-resolution spatial patterning 
information from imagery, developed at INR. 

omission error The frequency with which a map neglects to show a class where it is 
actually present. 

partial-ocular plot A field sample with incomplete species cover data. 
patch A fairly homogeneous and contiguous area of land cover discernible 

on the ground, typically composed of a single vegetation or abiotic 
land cover type. 

photointerpreted plots Plots assigned to map class based on an assessment of imagery and 
other data sources available in the office, mostly used for training and 
AA of abiotic classes.  

producer’s accuracy The estimated probability that a map is correct where a particular map 
class is found on the ground. 

population contingency table An AA error matrix scaled to the mapped extent of each class in the 
inference area. 

potential natural vegetation The vegetation type that would hypothetically exist at a location 
under a natural disturbance regime. 

predictor data Independent data (e.g., variables derived from imagery, topography, 
climate, etc.) provided to an inductive model for prediction of a 
dependent variable (e.g., a map class). 

Python The programming language used for most project geoprocessing. 
quality control Process of improving the quality of data collected and/or entered. 
R The programming language used for most project statistical analyses. 
reached inference area The portion of the AIA reached by AA field crews and from which 

accuracy conclusions were drawn. 
random forests An outlier-resistant inductive modeling algorithm (Breiman 2001). 
round robin random forests An extension to random forests developed at INR for modeling a 

large number of classes with reduced sample size-related bias. 
sample contingency table An AA error matrix based on raw numbers of samples. 
SCM taxa The botanical taxa on which floristic similarity between plots, 

associations and map classes was determined; mostly species, but also 
including some genera and some sub-genus groupings of species. 

Sentinel-2 Mid-resolution European remote sensing satellites, active from 2015–
present. The Sentinel-2 data used were at 10- to 20-meter resolution. 

species cover match A set of tools for evaluating the degree of fit between a plot and an 
association or map class. Variants were created for use with full-
ocular and partial-ocular plots. 

training data Locations confidently assigned to a particular map class and used to 
build inductive models connecting patterns in predictor data to that 
map class. 

user’s accuracy The estimated probability that a map is correct where a particular map 
class is mapped. 
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1. Introduction 
1.1. Background 
1.1.1. NPS Vegetation Mapping Inventory and National Vegetation Classification 
The Vegetation Mapping Inventory (VMI) was created to classify, map and describe vegetation 
communities on National Park Service units across the United States (NPS 2018). The resulting 
classifications, maps and reports contribute to the inventory of NPS resources and inform 
management and planning decisions. NPS has provided guidelines for vegetation classification (Lea 
2011) and map accuracy assessment (Lea and Curtis 2010). 

VMI maps are based on the National Vegetation Classification (NVC), a collaborative effort to 
classify the vegetation communities of the U.S. in a consistent manner. The NVC grew out of work 
by The Nature Conservancy (TNC), NatureServe, and the Natural Heritage Program network 
(Grossman et al. 1998). It is an evolving classification to which several federal agencies and non-
profit organizations—including NPS, the U.S. Fish and Wildlife Service, the U.S. Geological Survey, 
TNC, and the Ecological Society of America—have contributed. 

The National Vegetation Classification Standard (NVCS) provides the hierarchical structure for the 
NVC. Based in part on an earlier international classification (UNESCO 1973), it was originally 
adopted by the Federal Geographic Data Committee (FGDC) in 1997 and updated substantially by 
FGDC (2008). The upper levels of the hierarchy define classes based on broad-scale physiognomic 
and ecological factors (e.g., climate regimes, continentality), the middle levels incorporate floristic 
and additional physiognomic factors based on finer scale variation, and the lower levels are based 
entirely on floristics, including dominant and diagnostic overstory and understory species. The 
hierarchy for natural vegetation and the classification for an association found in Pacific Northwest 
(PNW) montane forests is shown in Table 1. The most recent revision of the NVC was published as 
USNVC (2019). 

Table 1. National Vegetation Classification System hierarchy (version 2, FGDC 2008), and names of all 
levels for an example association. 

Hierarchy level Name Code 

Level 1–Class Forest & Woodland C01 

Level 2–Subclass Temperate & Boreal Forest & Woodland S15 

Level 3–Formation Cool Temperate Forest & Woodland F008 

Level 4–Division Vancouverian Forest & Woodland D192 

Level 5–Macrogroup Vancouverian Subalpine-High Montane Forest M025 

Level 6–Group North-Central Pacific Mountain Hemlock-Silver Fir Woodland G849 

Level 7–Alliance Tsuga mertensiana-Abies amabilis Forest & Woodland A3723 

Level 8–Association Abies amabilis/Rhododendron albiflorum Forest CEGL000225 
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1.1.2. NCCN vegetation inventory project 
The North Coast and Cascades Network (NCCN) vegetation inventory project (VIP) began in 2005. 
The first several years were primarily devoted to developing the regional association-level NVC 
(Crawford et al. 2009). The Institute for Natural Resources (INR) joined the project in 2008 to assist 
with the vegetation mapping portion of the project. In addition to the large parks—Mount Rainier 
National Park (MORA, 956 km2), Olympic National Park (OLYM, 3734 km2) and the North 
Cascades National Park Complex (NOCA, 2769 km2)—INR and NPS also worked cooperatively to 
complete two other mapping projects, the Lewis and Clark National and State Historical Parks 
(LEWI, 38 km2; Kagan et al. 2012) and Ebey’s Landing National Historical Reserve (EBLA, 78 km2; 
Copass and Ramm-Granberg 2016a). 

1.1.3. MORA vegetation classification and mapping project 
The three large NCCN parks were treated as a single mapping endeavor, but delivered as three 
distinct projects and reports (see also Nielsen et al. 2021a, Nielsen et al. 2021b). Although much of 
the classification and mapping work proceeded concurrently, the fieldwork focus moved from one 
park to another during the map training and accuracy assessment phases. The MORA project was the 
first of the parks to be sampled in each phase, with training data collection primarily in 2008 and 
accuracy assessment (AA) primarily in 2011. The training phase was done before the development of 
a consistent plot protocol allowing confident quality control of sample location and assigned class, 
and the AA effort was hobbled by a heavy snowpack that persisted through the summer of 2011. The 
comparative weakness of the MORA plot data presented major challenges to achieving acceptable 
map accuracy and AA sampling density. INR performed several subsequent field sampling efforts in 
a mostly successful effort to overcome these challenges. 

1.2. Approach 
1.2.1. Classification 
Mountainous environments in the Pacific Northwest present interlocking challenges for vegetation 
classification. First, the environmental envelopes of most species are largely determined by local 
climate, which responds in spatially continuous1 and often complex patterns to elevation, aspect, and 
characteristics of the surrounding terrain. Along these gradients, competition and historic factors may 
result in gradual changes in species prominence that make field assessment of breaks based on 
thresholds of species cover difficult; chance variation adds to that unreliability. Second, species 
succession is often drawn out over centuries, and its rate varies over both coarse and fine spatial 
scales. For example, in the montane zone, the most characteristic successional process is the gradual 
establishment and increase in cover of silver fir (Abies amabilis). Coarse-scale limitations on seed 
availability, germination and establishment are posed by the prominence of silver fir in the 
surrounding area and by interannual climate variability. At subalpine elevations, successional 
processes are similarly drawn out, but here they also vary at fine spatial scales as micro-habitats 
differ in their suitability for plant establishment in a given year. Succession results in vegetation 
classification ambiguity because most vegetation follows a gradual trajectory with no clear and 

 
1 As contrasted with the more discontinuous influence exerted by factors such as soil chemistry. 
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repeatable breaks between stages. Third, at high elevations, the spatial grain of available habitat for 
individual species is so fine that it becomes impractical to delineate all distinct assemblages of 
species. Here, the vegetation might better be described as a variable mosaic in which assemblage 
dominance tilts across more coarsely scaled gradients. This results in field interpretation challenges 
because of lack of clarity about the minimum patch homogeneity and size needed to constitute a 
sampling unit. At these elevations each species in fact exploits micro-habitat niches that become 
available to it on an individual basis. 

The starting point for the NCCN map classification was an early draft of the interim NCCN alliances 
later presented in NatureServe (2012). These draft interim alliances were defined by a crosswalk 
from the vegetation associations presented in Crawford et al. (2009). Those associations, in turn, 
were defined by using classification plots—collected from 2005–07 at all NCCN parks—to refine 
and provide context to several previous regional classifications. Collection of mapping plots, which 
were field-assigned to vegetation association using the keys in Crawford et al. (2009), began in 2008, 
using draft versions of those keys. The original plan was to train map models based solely on 
mapping plots, but it quickly became clear that not enough mapping plots had been collected—
particularly at MORA—to adequately train models, so the previously collected classification plots 
were added to the map training pool. The possibility that these plots were assigned to associations 
based on criteria other than the keys in Crawford et al. (2009) presented a potential downside to their 
use for this purpose. 

Early map modeling results found a significant degree of mismatch between the assigned alliance of 
many plots and their modeling tendencies. Through experimentation, it became clear that many of 
the errors were a consequence of dissimilar plots, particularly in conifer forests, being assigned to the 
same alliance due to key breaks that resulted in artificial boundaries between types. Although the 
associations were originally derived via multivariate cluster analyses and are generally “bloblike” in 
n-dimensional space, the keys carved straight lines through these concepts, squaring them off with 
hard breaks such as “Oplopanax horridus > 5%.” Using key-based calls lowered floristic cohesion 
within the resulting associations and resulted in many plots that modeled poorly as the class to which 
they had been assigned. We addressed this problem by moving to a multivariate clustering approach 
for determining the best floristic match for a given plot.2 

Field data from all plots collected after 2008 included reasonably complete species cover data, which 
allowed us to retroactively reassign association calls if the overall species composition warranted 
that. When this dataset was completed for all three parks, it also enabled us to revise the associations 
themselves in order to correct a variety of pre-existing issues. We termed the revised concepts 
mapping associations, as we were unsure whether the NVC would be adjusted to incorporate them 
(many have in fact been included in Ramm-Granberg et al. 2021). Regardless, the revisions were a 
necessary step in rolling the plot-level data up into a mappable classification. The mapping 

 
2 Although we have provided a dichotomous key for field use in identifying the final map classes (in keeping with 
NPS required deliverables), dropping the use of keys for assigning vegetation associations was an essential step in 
deriving map classes with floristic and modeling cohesion. 



 

4 
 

associations were combined into map classes based on their joint floristic and modeling similarities. 
Despite the additional steps involved in their production, many of the mapped classes bear strong 
resemblances to the original concepts presented in NatureServe (2012). 

Another classification challenge we encountered was that areas recently disturbed by fire, flooding or 
mass movement sometimes fit awkwardly into the original NVC associations. We moved away from 
strict floristics-based labeling of plots affected by disturbance and considered their setting and site 
history as well. Several iterations of plot-level examination and reassignment followed by 
association-level floristic recalculation resulted in convergence of the classification on several 
floristically consistent associations often connected with natural disturbance. Past anthropogenic 
disturbance, such as selective logging of Sitka spruce (Picea sitchensis) near the coast,3 also 
occasionally resulted in ambiguities. Moving away from key-based assignment of association calls 
helped considerably here: in the case of logged Sitka spruce, enough floristic signals persisted from 
the natural vegetation community that the correct call was evident, even if the spruce cover was now 
well below ten percent. Finally, areas experiencing ongoing change (e.g., conifer encroachment into 
established meadows) also present a challenge as the combination of species may not have been well-
represented in the past. Some flexibility is necessary in such areas, which are likely harbingers of 
greater dilemmas to come. 

1.2.2. Mapping 
In contrast to many VMI products, we mapped the large NCCN parks using automated model-based 
methods rather than photo-interpretation (PI). This decision was originally made because of the size 
of the parks and the indistinct appearance of many of the map classes in imagery. For example, two-
thirds of the NCCN parks are covered by coniferous forests and woodlands of 24 different map 
classes. The component tree species generally cannot be visually distinguished, and many are 
recognized in the field based as much on their understory composition. In addition, the gradual 
change of species prominence along climatic gradients in PNW forests, and the variable and patchy 
species composition characteristic of many non-forest patches, result in a landscape that is not easily 
divided by hand into discrete patches.4 Despite this, and the inherent classification challenges 
discussed above, sites within the parks can be broken repeatably into map classes based on their full 
species composition, and these classes can be reliably mapped using model-based techniques. 

We used an inductive modeling process, in which a computer learns how to distinguish map classes 
by the examples provided from field plots. We used the random forests algorithm (RF; Breiman 
2001), as adapted for the R language (Liaw and Wiener 2002). The large number and unequal 
abundance of map classes proved to be a challenge to multi-class models, which were unable to 
simultaneously perform well at the prediction of all classes. To address this, we decomposed each 

 
3 Because the same classification pertains to MORA, OLYM and NOCA, throughout the text we have chosen 
examples to illustrate our approach from across the three parks. 
4 Many non-forest classes might have been mapped by hand with ideally timed high-resolution aerial imagery. 
However, we did not feel that the expense of collecting such imagery over the large expanse of the parks could be 
justified for an uncertain outcome that still would have left the forested lands unmappable via photo-interpretation. 
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multi-class model into many one versus one binary models, in which individual map classes were 
modeled directly against each other (see Bishop 2006, p. 339). We used a novel predictor selection 
scheme that reduced prediction time, limited collinearity in the predictive variables, and co-
optimized model accuracy and effective spatial resolution. The model-based results were manually 
edited where needed5 and then subjected to a map accuracy assessment based on independent field 
data collected based on a stratified random sample. 

1.2.3. Spatial resolution and minimum mapping unit 
Several map classes often occur in patches of 100 m2 or smaller. We attempted to capture these 
occurrences, and to produce a map resembling manually delineated VMI maps, by modeling on 3-
meter pixels (9 m2). We smoothed the raw model outputs and filtered to a class-specific minimum 
patch size ranging from 81–441 m2. Many occurrences above those thresholds likely remained 
undetected, because some essential predictors were derived from coarser resolution sources. Based 
on the average resolution of the predictors selected across all models, a typical minimum mapping 
unit (MMU) of 500 m2 can be assumed, although many patches smaller than that are mapped. 

1.3. Project area 
1.3.1. Geography 
Mount Rainier National Park (MORA) is located in the Cascade Range of western Washington State, 
lying about 80 km (50 miles) southeast of Seattle. It is the third largest of the North Coast and 
Cascades Network parks, with which it is shown in Figure 1, and lies just west of the Cascades crest, 
though Mount Rainier itself is much higher than the peaks and ridges that form the hydrologic divide. 
The park is surrounded by other protected lands, including wilderness areas in the Snoqualmie and 
Gifford Pinchot National Forests, although some portions of this land are managed for timber 
production or resort-based recreation. 

 
5 Polygons of some distinct yet rare vegetation types (e.g., ruderal meadows at old farm sites at OLYM) modeled 
poorly due to insufficient training data, but were easily reassigned by hand. Strips adjacent to roads also frequently 
mapped poorly and were reassigned manually.  
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Figure 1. Map of North Coast and Cascades Network National Parks, from Copass and Ramm-
Granberg (2016b). Fort Vancouver National Historic Site and Lewis & Clark National Historical Park lie 
farther south and are not shown. 

The park (Figure 2) encompasses the active stratovolcano Mount Rainier, the highest mountain in 
the Cascade Range (4,392 meters; 14,410 feet). The mountain hosts some 90 km2 of glaciers, 
including both the largest and the lowest terminal altitude glaciers in the contiguous United States 
(Riedel and Larrabee 2011). The park also includes extensive montane old growth conifer forests, 
luxuriant meadows and subalpine parklands and austere alpine plant communities developed on 
pumice deposits. Several major rivers originate from glaciers and emerge from the park: the Carbon 
River from the northwest, the White from the northeast, the Ohanapecosh and Cowlitz from the 
southeast, the Nisqually from the southwest, and the Puyallup from the west. The valley of the lower 
Carbon supports an inland temperate rainforest similar to forests on the Olympic Peninsula. The east 
side of the park, and especially the northeastern quadrant, lies in a rain shadow cast by the mountain 
itself. Reduced precipitation and geologically recent pumice deposits there (see Crandell 1969) result 
in distinct vegetation communities, especially in the alpine and subalpine zones. Elevations in the 
park range from 460 meters (1,500 feet) to the mountain’s summit. 
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Figure 2. Map of Mount Rainier National Park, illustrating topography, rivers, roads and other features. 

We defined the project area as the park (95,593 hectares; 236,215 acres), in addition to a variable-
width buffer determined by availability of key predictor geospatial data. The surrounding buffer area, 
which was not assessed for map accuracy, accounts for half the total project extent of 190,008 
hectares (469,520 acres). 

1.3.2. Environmental setting, bioclimatic zones and major vegetation types 
Continuing subduction under the North American plate over at least 40 million years has resulted in a 
series of volcanos here. Mount Rainier, whose building began just 500,000 years ago, is merely the 
current manifestation. During the height of Pleistocene continental glaciations, massive walls of ice 
blocked valleys and forced lava flows to form the distinctive ridgelines that radiate from the peak. 
The central cone and surrounding ridges have been alternately built and collapsed during eruptive 
periods over the last 11,000 years, resulting in the lahar surfaces and layers of tephra which underlie 
the vegetation found today. Although Mount Rainier is considered active, no magmatic eruptions 
have occurred in the last thousand years (USGS 2020). 
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The tremendous vertical relief (3,900 meters; 12,800 feet), a strong east-west precipitation gradient, 
and variations in topographic and hydrologic setting result in a wide range of distinct habitats. A total 
of 821 native vascular plant taxa are thought to occur within the park (Rochefort 2010).6 Though this 
is lower than that documented at OLYM (see Buckingham et al. 1995) and NOCA (see Biven and 
Rochefort 2010), the number is compatible on a per-area basis. A variety of disturbance processes 
(e.g., lahars, mass movement, avalanches, fire) further increase landscape complexity. The major 
vegetation zones are discussed below. 

Lowland forests 
Lowland forests dominated by Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga 
heterophylla) and western redcedar (Thuja plicata) occupy most of the landscape up to about 910 
meters (3,000 feet) elevation. Sitka spruce (Picea sitchensis) is occasionally present below about 610 
meters (2,000 feet) in the valley of the Carbon River. Understories vary depending on site moisture 
and stand history. Riparian forests include the broadleaved trees red alder (Alnus rubra) and black 
cottonwood (Populus trichocarpa), but mature examples are not abundant, presumably due to the 
frequency of disturbance along the glacier-fed rivers and the competitive advantage of conifers on 
drought-prone deep cobble surfaces. Upland broadleaf forests are even rarer; where they occur they 
occupy landslide-affected areas and are dominated by bigleaf maple (Acer macrophyllum) with 
substantial Douglas-fir.  

Lower montane forests 
The lower montane zone is defined primarily based on the codominance of silver fir (Abies amabilis) 
with western hemlock and the rarity of tree species associated with higher elevations. The lowest 
occurrences of silver fir are in moist forests on valley bottoms and north-facing slopes. The bulk of 
the zone, however, occurs in valley wall settings. Mesic forests characterized by silver fir and 
western hemlock are predominant up to about 1,250 meters (4,100 feet) elevation. Talus slopes and 
the lower portions of avalanche tracks are occupied by tall vine maple (Acer circinatum) shrublands; 
these extend downward into the lowland zone where suitable habitat exists. 

Upper montane forests 
The upper montane zone is characterized by closed forests with substantial cover of higher elevation 
species such as Alaska-cedar (Callitropsis nootkatensis), mountain hemlock (Tsuga mertensiana), 
subalpine fir (Abies lasiocarpa) and noble fir (Abies procera). These forests are predominant up to 
about 1,580 meters (5,200 feet) elevation. The zone is much more abundant at MORA than at the 
other NCCN parks, in part because of the use of noble fir as a defining feature of the zone but also 
because of the existence of much suitable territory in the appropriate elevation range along the major 
ridges radiating from the mountain. Tall shrublands of Sitka alder (Alnus viridis), often with Alaska-
cedar, are frequent in avalanche tracks and other disturbed areas in the upper montane zone. 

 
6 Surveys performed for this project since Rochefort (2010) have documented additional species in the park. For 
example, INR made confident identification of quaking aspen (Populus tremuloides) in a bald adjacent to the Muddy 
Fork Cowlitz just below Box Canyon. 
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Subalpine environments 
Above the closed forest zone, upper montane forests transition into subalpine woodlands and tree 
islands dominated by mountain hemlock and subalpine fir. Subalpine parklands, mosaics of wooded 
areas with dwarf shrublands and meadows, are predominant up to about 1,880 meters (6,200 feet). In 
the northeastern quadrant of the park—especially on Sunrise Ridge and in the Sourdough 
Mountains—the zone is considerably more extensive than elsewhere and dry subalpine fir woodlands 
can be found up to about 2,060 meters (6,800 feet). Whitebark pine (Pinus albicaulis) and lodgepole 
pine (Pinus contorta) are often present in these stands. Subalpine woodlands and tree islands are 
interspersed with shrublands and meadows at a range of spatial scales. Subalpine shrublands are 
characterized by dwarf ericaceous shrubs such as pink mountain-heather (Phyllodoce empetriformis), 
Cascade blueberry (Vaccinium deliciosum) and white mountain-heather (Cassiope mertensiana) with 
some taller shrubs such as big huckleberry (Vaccinium membranaceum) and Sitka mountain-ash 
(Sorbus sitchensis) in protected areas, especially near trees. Herbaceous subalpine vegetation is 
represented by several meadow types, with common species including subalpine lupine (Lupinus 
latifolius), fan-leaf cinquefoil (Potentilla flabellifolia), American bistort (Bistorta bistortoides), 
showy sedge (Carex spectabilis), green fescue (Festuca viridula), Gray's lovage (Ligusticum grayi), 
wandering daisy (Erigeron glacialis) and Sitka valerian (Valeriana sitchensis). 

Alpine environments 
In the alpine zone, which generally ranges upward from about 1,880 meters (6,200 feet), tree cover is 
reduced to stunted krummholz of mountain hemlock, subalpine fir and Alaska-cedar. Dwarf 
shrublands and meadows transition into sparser alpine variants with shorter vegetation and fewer 
species. Common species include pink and white mountain-heathers, showy sedge, black alpine 
sedge (Carex nigricans), prairie lupine (Lupinus lepidus), partridgefoot (Luetkea pectinata), 
spreading phlox (Phlox diffusa), Parry’s rush (Juncus parryi), alpine aster (Oreostemma alpigenum), 
Davis’ knotweed (Aconogonon davisiae) and Piper’s woodrush (Luzula piperi). Eventually 
vegetation gives way almost completely to barren bedrock, talus, permanent snowfields and glaciers. 

1.3.3. Human history 
There is evidence of at least 8,500 years of indigenous use of the landscapes now included in the 
park. The traditional lands of the Cowlitz, Muckleshoot, Nisqually, Puyallup, Squaxin Island and 
Yakama people overlap with the present-day park boundary. Indigenous people hunted and gathered 
resources seasonally at all elevations of the park, and used fire to improve ungulate habitat 
(Burtchard 2007). Archeological sites, interpreted as seasonal residential base camps, have been 
found in subalpine areas all around the mountain. The density of these sites suggests that subalpine 
environments were of particular utility for hunting, wool gathering and collecting a wide variety of 
seasonally available foods including berries and perennial plants (Burtchard 2007). 

Early European explorers in the region included Captain George Vancouver, who gave the mountain 
its English name in 1792. With the westward American expansion in the nineteenth century came 
explorers and climbers, and interest quickly developed in establishing a park to encourage tourism 
and preserve the natural resources. Mount Rainier National Park was established by Congress in 
1899, the fifth national park in the country. In its early years, development activities focused on the 
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development of an extensive road network and lodges and other visitor facilities at Longmire, 
Paradise and Sunrise. Limited mining operations, especially in Glacier Basin, continued through the 
1950s; the last claims in the park were not acquired by the federal government until 1984 (Burtchard 
et al. 2017). Mount Rainier’s proximity to major cities in western Washington contribute to its 
popularity; in recent years upwards of two million people have visited annually (NPS 2020a). 

1.3.4. Previous vegetation studies 
Inventory, classification, and mapping of vegetation have been ongoing at Mount Rainier since the 
late nineteenth century (NPS 2012). The first comprehensive flora (Jones 1938) contained 729 
species.7 C. Frank Brockman conducted and published a wide variety of vegetation studies during his 
1928–1941 tenure as “Information Ranger.” These included studies in many major ecosystems (see 
NPS 2020b). The USGS published many reports in the mid-twentieth century regarding the history of 
glaciation and pyroclastic deposition in the park; many of these are relevant and useful references for 
understanding patterns of vegetation distribution and recovery processes (e.g., Sigafoos and 
Hendricks 1961, Mullineaux 1974). 

Academic researchers, especially from the University of Washington and Oregon State University, 
have long been active in the park. Drawing partly on the work of Hamann (1972), Henderson (1974) 
presented a detailed classification of subalpine and alpine meadow and dwarf shrub communities, 
gave an overview of their distribution in the park, and proposed successional relationships between 
the types. The later work of Edwards (1980) and Rochefort and Peterson (1996) further contributed 
to the understanding of the structure and dynamics of subalpine and alpine meadows. The influence 
of climate change on vegetation has been a recurring topic of investigation since the late 1960s, when 
park managers initiated a study of tree establishment in subalpine meadows. Franklin et al. (1971) 
and Henderson (1974) noted increased establishment in the early twentieth century following the 
conclusion of the Little Ice Age. Other researchers have followed up on this work, investigating the 
impacts of climate change on conifer growth (Peterson and Peterson 2001), forest composition (e.g., 
Kroiss and Hille Ris Lambers 2015) and flowering phenology (Sethi et al. 2020). 

Several previous vegetation mapping efforts have relied on interpretation of aerial photography to 
extrapolate findings from extensive field sampling to park-wide maps. Hemstrom (1979) and 
Hemstrom and Franklin (1982) used increment cores to estimate the dates of stand replacement 
events and extended the results via photo-interpretation to reconstruct a spatially-explicit fire 
chronology of the park. Franklin et al. (1988) created a classification of the forests at Mount Rainier 
which included fourteen mature forest types and five seral types; they illustrated their distributions 
with a park-wide map. The single previous vegetation map based on satellite imagery was produced 
by Pacific Meridian Resources (1997), who used a modified supervised classification method to map 
14 vegetated and three unvegetated classes, in addition to some elements of vegetation structure, 

 
7 The most recent flora published (Biek 2000) includes 871 species. A recent inventory lists 973 vascular plant taxa, 
821 of which are native (Rochefort 2010). 
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from 30-meter resolution Landsat TM imagery collected in 1988 or 1991.8 The classification focused 
on forests; all herbaceous and shrub-dominated vegetation were lumped into a single class each. 

Remote sensing techniques have also been used in some specialized mapping applications more 
recently in the park. Stueve et al. (2009) applied change detection techniques to declassified high-
resolution satellite imagery from 1970 and aerial photography from 2003 to map recent tree 
establishment above continuous treeline. Moore et al. (2019) used the panchromatic and thermal 
bands from a 2014 Landsat 8 scene to estimate the extent of clean and debris-covered ice in the 
Carbon, Winthrop and Emmons Glaciers. While the latter study is not specifically vegetation-related, 
its results provide some useful context for interpretation of our mapped alluvial barren and exposed 
snow and ice classes. 

1.4. Project timeline 
The following timeline describes the primary activities during each year of the 15-year project. Only 
activities at MORA are described; activities were focused on other NCCN parks during several years. 

2005 — NPS project initiation, planning and scoping, fieldwork for accuracy assessment of previous 
generation vegetation map (PMR 1997), database development. 

2006 — Classification fieldwork, planning and scoping, database development. 
2007 — Classification fieldwork, development of association-level NVC and database. 
2008 — INR joins project. Image segmentation and map training fieldwork. NAIP and satellite 

image collection and processing, development of association-level and higher-level NVC. 
2009 — Development of fieldwork protocols for additional map training, limited map training 

fieldwork, development of higher level NVC, satellite image collection and processing, 
development of lidar processing and predictor metrics methodologies. 

2010 — NAIP image collection and processing, development of predictor metrics methodologies. 
2011 — Production of draft vegetation map for use in stratification of accuracy assessment sampling, 

AA sample design, AA fieldwork. 
2012 — AA data quality control, NAIP and satellite image collection and processing. 
2013 — AA data quality control. 
2014 — Additional map training and AA fieldwork for poorly sampled regions. Training data quality 

control, AA data quality control, NAIP image collection and processing. 
2015 — NPS gives INR go-ahead to approach NCCN projects as a single entity and to work on the 

classification as needed for successful mapping. Training data quality control, floristics 
methods development. 

2016 — Training data quality control, floristics quality control, mapping associations development, 
NAIP image collection and processing. 

2017 — Training data quality control, floristics quality control, mapping associations development, 
map classification development, development of new topographic predictor metrics, 
refinement of nested texture metrics methodology. 

 
8 PMR (1997) specifies 1988 in one place and 1991 in another. 
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2018 — Training data quality control, mapping associations development, map classification 
development, satellite image collection and processing, draft map production. 

2019 — NPS draft map review. Additional AA fieldwork for poorly sampled classes. Training data 
quality control, mapping associations completion, map classification completion, AA data 
quality control, development of shadow correction methods for NAIP imagery. 

2020 — Production of final maps, AA analysis, report.  
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2. Methods and Results 
Most NPS VMI maps have been produced by photo-interpretation (PI). We used model-based 
methods instead, because of the large size of the NCCN parks and the visual similarity of many of 
the key plant communities. Machine learning methods were used to extrapolate from a large set of 
classified field plots to the full extent of the park. The mapped vegetation units were 3-meter pixels 
rather than polygons, because we found that pixel-based modeling was the only reliable method for 
boundary detection between visually similar map classes. We invented and developed a variety of 
innovative image processing and modeling techniques to achieve finer spatial resolution and greater 
accuracy than is typical of model-based vegetation maps. The primary phases of the mapping 
process—many of which occurred concurrently—were collection and basic quality control of 
training field data (Section 2.1), floristics data treatment and associated plot QC (Section 2.2), 
development of mapping associations and associated plot QC (Section 2.3), crosswalking 
associations to map classes (Section 2.4), acquisition and pre-processing of predictive data sources 
(Section 2.5), development and creation of predictive metrics (Section 2.6), machine learning-based 
modeling (Section 2.7) and post-processing and editing (Section 2.8). 

2.1. Field data 
Field data were used to develop an association classification (Section 2.3) and map classification 
(Section 2.4) and to provide training data for the machine learning processes used to create the map 
(Section 2.7.2). The same classification was used at each of the large NCCN parks; its development 
drew from 4,110 plots collected at MORA, OLYM and NOCA. Because the classification relied on 
data collected from all parks, each of those protocols is reviewed here. The map training data 
included 1,596 field plots, all collected at MORA, in addition to the PI plots discussed later. 

2.1.1. Sample collection 
We trained predictive models using plots from multiple sampling efforts with distinct sample designs 
and field protocols. Most were collected during the mapping phase of the project, between 2008 and 
2015. Although field protocols evolved over this time, the fundamentals were in place by 2010.9 We 
also used many plots collected in 2006–07, during the initial NVC development phase of the project 
(see Crawford et al. 2009). Many of these plots included full floristic data and suited our needs well. 

Training data for inadequately sampled vegetation types were supplemented by incorporating plots 
from a variety of other field efforts in the parks between 2005 and 2015. Although the protocols 
varied widely for these plots, through the quality control process (Section 2.1.2) we converted all 
data to a standardized format: a circle of known radius georeferenced to aerial imagery collected in 
2015 (Section 2.5.1) and a species list with cover estimates to the nearest one percent (or trace if 

 
9 The primary requirements were (a) plot dimensions adjusted to match a homogeneous vegetation patch, up to a 
maximum 40-m radius circle; (b) documented plot center location and radius in four cardinal directions; (c) diagram 
illustrating landmarks and land cover transitions, for spatial QC; (d) reasonably complete floristic data including 
visual percent cover estimates; and (e) photos at cardinal directions from center, for spatial and floristic QC. 
Unfortunately, most MORA plots were collected before these improvements were made. 
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present in smaller amounts). Plots with reasonably complete species occurrence data were designated 
full-ocular plots, while those with incomplete data were designated as partial-ocular. 

The following sections outline the sample designs, field protocols, and data QC procedures for all 
plots used to create the map classification or the MORA vegetation map. Table 2 summarizes this 
information. The table does not include photo-interpreted plots, which were mainly used as training 
for unvegetated classes. 

Table 2. Total number of field plots used to create the map classification (“full floristics plots”) and the 
MORA vegetation map (“model plots"), categorized by park and collection effort. “Ocular type” specifies 
whether documenting full species cover data was an objective of the protocol. Photo-interpreted plots 
were also used for modeling; those are not included here. 

Collection effort 
Collection 
years 

Collected 
by 

Ocular 
type 

Full floristics plots Model plots A 

MORA OLYM NOCA MORA 

VIP classification 2006–07 NPS Full 186 228 79 213 

VIP mapping protocol X 2008 NPS Partial D 44 0 0 488 

VIP mapping protocol M B 2009–11 NPS Partial D 33 10 0 51 

VIP mapping protocol Y 2009–11 NPS Full 151 1,094 0 236 

VIP mapping protocol Z C 2012–15 NPS Full 0 233 1,612 0 

VIP mapping protocol Q 2014, 2019 INR, NPS Partial D 1 0 0 172 

PMR accuracy assessment 2005–06 NPS Full 61 18 10 132 

Monitoring reconnaissance 2005–14 NPS Full 91 46 48 135 

UW forest community 2015 UW Full 165 0 0 167 

Total – – – 732 1,629 1,749 1,594 
A There is a large amount of overlap with full floristics plots collected at MORA. Totals include additional training 

data created in adjacent or included patches based on plot notes. 
B Totals reflect number of individual patches from subdivision of original mosaic plots. 
C Including verification plots, revisits and updates to previously collected plots using revised protocols. 
D Some plots had floristics supplemented later by inspection of field photos, and were treated as full-ocular plots. 

NCCN VIP plot types 
The following plot types were collected especially for the NCCN VIP and are listed chronologically. 

Classification (2006–07) 
These plots were intended primarily to support development of the NVC for the NCCN (Crawford et 
al. 2009, Ramm-Granberg et al. 2021) and were collected by NPS at the three major parks. Crews 
sampled a broad range of types.10 The protocol included collection of a comprehensive species list 

 
10 Data collection was particularly focused on vegetation types known to be undersampled in the existing draft 
classification, such as shrub-dominated avalanche chutes. Circular plots were located opportunistically in 
homogenous patches that were large enough to meet plot size recommendations. Forested plots were sampled over 
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with cover estimates and several field photos. Plots were assigned to an association from an early 
draft of the NVC, or to a provisional association if no good match could be determined. 

Mapping protocol X (2008) 
Collected only at MORA, these plots represented the earliest sampling implemented during the VIP 
mapping phase, before significant improvements were made in spring 2009. Polygons segmented 
from true color aerial imagery were targeted for opportunistic sampling (Figure 3). Crews stepped 
away from trails into an accessible point within each polygon and assessed the surroundings. They 
made estimates of crown cover for up to three tree species, but understory species were generally not 
documented. At least two photos were taken. A vegetation association was selected from an early 
draft of the NVC.11 The very large polygons often contained multiple vegetation types; crews noted 
this when they were aware of it, but provided no details on their spatial arrangement. Protocol X was 
the main source of map training data at MORA; a completed fieldsheet is shown in Figure 4. 

 

an 11.3-meter radius (400 m2), woodlands and shrublands over an 8.0-meter radius (200 m2), and herbaceous and 
sparsely vegetated plots over a 5.6-meter radius (100 m2). Notes on soil conditions and fire history were taken. 
11 A plot center was selected within a representative homogeneous area for assessment of the vegetation association 
and canopy composition, which was documented within a 20-meter radius circle around the point. A secondary 
association was listed if there was a clearly distinct association located nearby, but no corresponding location 
information was documented. 
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Figure 3. Completed mapping phase map sheet (protocol X, 2008); tick marks are at 500-meter intervals. 
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Figure 4. Completed mapping phase data sheet (protocol X, 2008). 

Mapping protocol Y (2009–11) 
A variety of changes to the sample design and field protocols were implemented beginning in the 
2009 field season. A stratified sample design was implemented to guide the effort.12 Map sheets 
produced from resolution-merged aerial and satellite imagery allowed crews to navigate more 
efficiently, locate plots more accurately, and document vegetation patches for later use; similar paper 

 
12 Sample sites were targeted by using an unsupervised classification technique to break parks into fifty distinct 
strata based on Landsat reflectance data, topographic metrics, and geographic blocks. Within each stratum, targets 
were established in the most homogeneous Landsat pixel clumps within several hundred meters of trails. Field crews 
navigated to these locations and also established opportunistic plots in homogeneous occurrences of vegetation types 
that had been poorly represented in the targeted sampling. 
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maps were used in all subsequent field efforts. Beginning with protocol Y, plot dimensions were 
determined by the extent of the homogeneous vegetation patch present at plot center, up to a 
maximum 40-meter radius circle. Vegetation transitions along four perpendicular transects from the 
plot center were documented, and the plots were drawn by hand on the map sheet and documented in 
greater detail in a field diagram on the data sheet. Species cover was visually estimated for most 
plant species present.13 Photos were taken at cardinal directions from plot center, and the best-fit 
vegetation association was selected from the newly published NCCN NVC classification (Crawford 
et al. 2009). 

Mapping protocol M (2009–11) 
Field crews targeted subalpine and alpine areas to determine whether fine-scale mosaics of distinct 
alliance level vegetation might be combined into recurring mappable types.14 This effort targeted 
mosaics of vegetation patches, each of which was smaller than those considered for sampling during 
prior efforts. Species cover was estimated for the most significant species in each distinct patch and 
an association was chosen from Crawford et al. (2009). The data were later analyzed to assess 
whether the patches might be combined into consistent coarser-scale vegetation types, but patterns 
were not consistent enough to allow this. 

Mapping protocol Z (2012–14) 
Field sampling was guided by a revised stratified sample design.15 The field protocol was similar to 
protocol Y, except that association transitions along each transect were documented in great detail. 
This allowed additional plots to be generated later if needed. Field crews were remarkably stable 
during this period, allowing the collection of more complete species cover data at nearly all plots. 
The data collected during this time period was integral to the refinement of the mapping associations 
(Section 2.3). 

Mapping protocol Q (2014) 
The primary aim of this brief sampling effort was to collect data in accessible but unsampled regions 
of MORA, which had remained the most poorly sampled park. Early draft maps had difficulties 
separating forest types containing Tsuga mertensiana from those lacking it. To address this problem, 
we created a species distribution model for T. mertensiana and used it to target locations with an 

 
13 Over the years, field crews were increasingly comprised of returning, experienced members, and the capability to 
collect complete species composition data increased. The OLYM protocol Y data (collected primarily in 2010–11) 
therefore have considerably greater completeness than that from MORA (collected primarily in 2009). NPS’s 
original aim had been to produce a completed map of MORA before the other parks, so the MORA fieldwork was 
done in “hurry-up” mode, and a return there with the more experienced crews was never realized. 
14 Early in the project, we had planned to map to the default NPS vegetation inventory MMU of one half-hectare 
(Lea and Curtis 2010). Most subalpine alliance-level vegetation occurs at considerably finer scales than this. 
15 Combined unsupervised-supervised classification was used to break the landscape into 52 unique strata of Landsat 
spectral reflectance, climate metrics, and topographic curvature. Again, the most homogeneous accessible areas 
were determined using an automated procedure, and these locations were targeted on an as-needed basis by crews, in 
addition to sampling opportunistically in homogeneous vegetation encountered along the routes. 
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intermediate likelihood of presence. We also targeted sites exhibiting a high degree of draft map 
class uncertainty. Plots were 11-meter radius circles. All species with significant presence were 
documented, but cover was only estimated for tree species. Understory plants were simply listed in 
descending order of prominence. 

Other plot types 
We used plots collected for several other projects to provide data for vegetation types that would 
have otherwise been inadequately sampled. During the quality control process (Section 2.1.2) we 
adapted the available information to our purposes, making use of field notes, photos, and imagery. 

PMR accuracy assessment plots (2005–06) 
These plots were collected to assess the accuracy of the previous generation of NCCN vegetation 
maps (Pacific Meridian Resources 1997). Sampling locations were stratified across the mapped 
classes. Plots were 28.5-meter radius circles, and were labeled with an association from an early 
NVC draft or with a provisional call. Cover of the top three species in various height strata was 
collected. 

Monitoring reconnaissance plots (2005–15) 
Plots were collected in forests and subalpine areas to assess the suitability of randomly selected 
locations for long-term monitoring plots. Forest plots were 50x50-meter squares; subalpine plots 
varied in size. Cover was estimated for dominant species and the surrounding area was coded to an 
association from the most recent available NCCN classification. 

Forest legacy plots (2015) 
Plots collected at MORA in the 1970s and 1980s (Franklin et al. 1988) were revisited in a project of 
Dr. Hille Ris Lambers at the University of Washington. The cover of understory vegetation was 
estimated over several small subplots, but tree species were documented by counting the number of 
stems in distinct bole diameter classes rather than by cover.16 The field notes allowed us to convert 
these estimates into cover estimates that were reasonably compatible with other plots, and the fairly 
complete ocular data collected at these plots were critical in providing reference floristics data at 
MORA, which had been generally undersampled in this regard in earlier efforts. No vegetation type 
was assigned in the field. 

Photo-interpreted plots (2014–19) 
We supplemented the field-collected data for several structurally-defined and abiotic map classes17 
by assigning PI locations where it was possible to do so confidently. Generally, we approached this 

 
16 Understory plants were assessed via a cover estimate in four 1x1-meter quadrats and presence/absence in a 4-
meter radius circle; these were converted into an average percent cover for each species. Trees taller than breast 
height were individually measured in a 12.6-meter radius circle and were summarized in m2/ha. We converted the 
stem counts to rough percent cover estimates assuming that crown area was proportional to the square of bole 
diameter at the individual tree level. 
17 The map classes that received PI plots at MORA were C26–CONIFER KRUMMHOLZ AND TREED CLIFF, B30–
SUCCESSIONAL GRAVEL BAR SHRUBLAND, B31–BROADLEAF RIPARIAN AND SWAMP FOREST, S40W–LOW ELEVATION 
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as an iterative process, using previous map generations to assign additional data in areas that 
appeared to map poorly. We also used targeted absence plots to improve mapping in areas where we 
could only narrow down the correct answer to one of several map classes but were confident that 
draft maps were in error. These plots were used only in the binary models (Section 2.7.3) which 
pitted the specified possibly correct classes against specified clearly incorrect classes.18 

The efforts above resulted in the collection of about 6,500 field plots across the three parks. The 
MORA field plots used for map training are shown along with photo-interpreted plots in Figure 5. 

 

SHRUB-DOMINATED WETLAND, H50W–LOWLAND MARSH AND MEADOW, R71–ALLUVIAL BARREN AND DEBRIS-
COVERED ICE, R72–COLLUVIAL BARREN, R73–BEDROCK BARREN, W81–FRESH WATER and W82–EXPOSED SNOW 
AND ICE. 
18 The very limited number of such plots at MORA focused on confusion between R73–BEDROCK BARREN and other 
abiotic types. 
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Figure 5. Model training plot locations. Of the 1,900 plots, 1,594 were collected in the field (shown in 
black), and 306 were photo-interpreted (shown in red). 

2.1.2. Basic quality control 
An extensive quality control process was necessary due to the many distinct field protocols used, the 
variable field effort applied at different plots (particularly regarding species ocular estimates), 
ambiguities in patch delineation and ocular estimates resulting from heterogeneous vegetation, 
spatial inaccuracies due to poor GPS reception, field call misassignments caused by key artifacts, 
updates to the NVC vegetation classification during the data collection process, occasional species 
misidentification and data entry errors. The basic quality control steps for training data plots are 
described below. Quality control of floristics data and vegetation association calls are discussed in 
Section 2.2 and Section 2.3, respectively. 

Spatial characteristics 
Because of the fine-scale heterogeneity associated with many vegetation types in the park, we aimed 
to precisely and accurately locate each training plot with respect to the 2015 NAIP and lidar imagery, 
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which were the finest-resolution predictor datasets available. Minimizing spatial error was 
particularly important for non-forest plots in small patches. 

The vegetation patches represented by field plots varied in size and shape. In order to simplify data 
management and modeling, we converted all plots to a circle throughout which the assigned call was 
applicable, excepting permitted inclusions of 81 m2 or less (nine 3x3-meter pixels). This allowed us 
to represent plots simply as a center point and radius. We used a script to identify the center point 
and radius of the largest circle that would fit any delineated field polygons. Initial locations and radii 
were set for other plots based on the protocol’s assessment dimensions. For all plots, we verified the 
spatial characteristics by comparing field notes, plot diagrams, and field photos with NAIP, lidar 
imagery, and coarser-resolution satellite data. 

Plots were flagged for additional review if the GPS center point taken in the field was more than 20 
meters from the center point of the field-drawn polygon. We prioritized positioning the circle in the 
section of the plot closest to the GPS point, assuming that the area nearby was the most thoroughly 
surveyed portion of the plot. If there were signs of inconsistency between the GPS point, the plot 
description, and the appearance of the surroundings in imagery, we prioritized the plot diagram and 
field photos (if provided), repositioning the circle on the plot center as determined by that 
information. 

Disturbance review 
Various disturbances impacted the park in the years between field data collection and acquisition of 
the imagery used for final map production. To prevent the use of training data for which the field-
assigned vegetation type no longer corresponded to a plot’s condition in imagery, we identified and 
excluded plots that were disturbed between their sampling date and the acquisition date of the most 
recent imagery source used in modeling, August 16, 2016.19 Fires were the main source of 
disturbance. We digitized the perimeters and entered the dates of all documented fires in the park 
since 1984. For plots that lay within these perimeters, the sample collection date was compared to the 
disturbance date; if the disturbance occurred after sampling, recent satellite imagery was used to 
assess the extent of disturbance. If conditions no longer resembled those present at the time of 
sampling, the plots were not used in modeling.20 

2.2. Floristics 
2.2.1. Debugging species lists 
A fair number of inconsistencies in species nomenclature occurred in the ocular data, due to the use 
of at least two taxonomic references (Hitchcock and Cronquist 1973, Pojar et al. 2004). For the 
purpose of our analysis, we standardized the records by selecting the most frequently used name in 

 
19 Any disturbance impacting the park since this date will not be reflected in the map. Furthermore, areas disturbed 
within the time window spanned by the predictive imagery sources used (i.e., between summer 2015 and this date) 
may not be represented correctly. 
20 These plots were still used to develop floristic characteristics for the classification, despite no longer persisting in 
that condition. 
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the field datasets. We used Burke Herbarium (2020) to identify synonymies and to determine a 
standardized name for taxa where there was no prevalent name in the field datasets. Henceforth we 
refer to these standardized names, used in the field by NPS crews, as field names; we provide a 
crosswalk to Hitchcock and Cronquist (2018) in INR (2021b). 

We systematically addressed problems involving confused taxa that resulted from consistent 
misidentifications during particular field collection efforts and from easily scrambled species names 
and codes. In some cases, resolving these and other thorny issues required that we refer to plot 
photos, field notes, location information and data from surrounding plots. Occasionally we fell back 
on the judgment of experienced botanists that a particular taxonomic record was unlikely. We 
considered the experience level of the field crew involved on such plots in making our decisions. 
Other cases were easier to resolve, such as recognizing that a Eucephalus ledophyllus record at 
OLYM was probably really E. paucicapitatus, based on their established range boundaries. 

2.2.2. Expanding species lists 
Plots collected under Protocols Y and Z emphasized collection of full-ocular data. Because these 
were the main protocols used for mapping plots at OLYM and NOCA, the relationship between 
floristics and map units (mapping associations or map classes) was very well characterized at those 
parks. In contrast, MORA had very few full-ocular plots, due to the use of the minimal Protocol X 
and the lower overall sampling effort beyond the classification phase. This created two related 
difficulties. First, it reduced the degree to which MORA plots were represented in the relationships 
developed between floristics and map units, which threatened to make the resulting map 
classification less applicable at MORA and thus less representative of the NCCN as a whole. Second, 
it made the MORA association calls—even at plots with full-ocular data—less reliable, because the 
distinct character of the vegetation there was not well-captured in the data. 

In an attempt to address these concerns, we made additional efforts to improve the floristic 
completeness of many partial-ocular plots at MORA. For targeted plots in poorly sampled portions of 
the classification, a field botanist examined the plot photos and field notes, adding observed species 
and adjusting cover estimates. We tested the consequences of creating species lists entirely in this 
manner, comparing results to lists generated in the field at full-ocular plots. We found that on 
average three-quarters of the species with at least 1% cover were found. Automated classification of 
these office-created ocular records21 matched the full-ocular result at the association level at about 
35% frequency and at the map class level at nearly 70% frequency. While field-collected full-ocular 
data are clearly preferable, these results represent a significant improvement over the level of field 
detail provided with most partial-ocular plots at MORA. We assigned all plots to association or map 
class manually, based not only on species cover estimates but on the cumulative weight of all 
available evidence. 

In addition, we lowered the standards for labeling MORA plots as full-ocular, to better represent the 
park in map unit floristics. In general, if we determined that a plot’s ocular data likely represented all 

 
21 Automated assignments were made using the species cover match tools discussed in Section 2.2.4. 
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prominent species and contained the most significant species in each vegetation layer,22 we 
considered it full-ocular and used it in establishing the floristic characteristics of mapping 
associations and map classes. Despite these efforts, MORA remained poorly represented compared to 
the other parks, though the later incorporation of the forest legacy plots helped considerably (see 
Table 2). 

2.2.3. Taxonomic treatment for floristic analyses 
Plot-level species lists were used in all phases of this project. They were the primary source of data 
we used to assign plots to associations, to rework the mapping associations and form the map classes, 
and to describe the associations and map classes for users. However, the level of floristic detail 
captured varied by observer, collection effort, time of year and weather conditions, especially for 
uncommon, cryptic and ephemeral taxa. Additionally, the number of observations of many less 
common species fell short of the sample sizes needed to generate reliable statistics. To address these 
issues, we aggregated rarer species into groups to increase statistical strength and took other steps to 
reduce variability in floristic detail across plots. We defined a set of analysis taxa in which common 
and readily identifiable species were treated at species level, while less common or troublesome 
(cryptic or otherwise difficult) taxa were treated at genus level or as intermediate sub-genus groups 
defined by lumping species with similar habitats. Some infrequently observed taxa were dropped 
entirely from analyses involving plot-level comparison. 

Troublesome species found in the field were often identified at the genus level.23 Because our 
floristic analysis presupposed that the same taxonomic units were used across all plots, leaving these 
records at genus level would have required lumping the genus and sacrificing the species-level data 
collected across all other plots. To avoid this, we worked to link genus-level observations to a more 
specific taxon, particularly for common genera associated with diverse habitats. We accomplished 
this by creating sub-genus species groups with similar overall morphology, habitat requirements, 
distributional data and community affinities.24 We then assigned genus-level field records to the sub-
genus groups based on the weight of evidence at plots (e.g., elevation, topographic position, species 
co-occurrence matrices). Other less common species and genera were lumped to either the sub-genus 
or genus level, in order to gain necessary sample sizes for analysis. 

Species of Carex and Salix, which are key indicators of several vegetation types, required the most 
attention. In these widespread yet difficult genera, the group formation process focused primarily on 
morphology and habitat requirements. As an example, unknown dwarfed alpine willows were coded 
as Salix nivalis+, which was defined to include S. nivalis as well as S. petrophila and S. cascadensis. 

 
22 We made this determination with reference to our own field experience and by comparing the species lists to 
available field photos and to other data collected nearby. 
23 A few records were identified at family or higher taxonomic levels; these were excluded from analysis. 
24 Treatment at this level required that we merge the species-level data collected at other plots into the same sub-
genus categories, so determining appropriate categories was critical. Former NPS field botanists Matt Lee, Tynan 
Ramm-Granberg and Rachel Brunner were instrumental in this step. 
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This entailed losing the distinction between the three alpine species, but we deemed that far 
preferable to combining all of them with unlike lower elevation species such as S. commutata and S. 
sitchensis. Other genera, in which species were less clearly sortable by morphology and life zone, 
were treated primarily based on species affinity data, using the full plot database to develop co-
occurrence relationships and sub-generic groupings.25 Finally, some species that were often confused 
by field crews were also lumped (e.g., Juncus parryi and J. drummondii were lumped as J. parryi+).  

Across 49 genera, 73 distinct sub-genus taxa were created in this manner, with genus-level 
occurrences assigned downwards to them and species-level occurrences lumped upwards into them. 
65 other genera were treated at the genus level, lumping species-level occurrences up. These taxa, in 
addition to the species treated at species level, are cumulatively referred to as SCM taxa (see Section 
2.2.4). Table 2 in INR (2021b) identifies the SCM taxon used for each field-identified taxon.26 Prior 
to publication, plant nomenclature was updated to match Hitchcock and Cronquist (2018); the 
resulting name changes are documented in Table 1 of INR (2021b). 

2.2.4. Floristic analysis tools 
An enormous quality control effort was needed to bring consistency to the association calls across the 
more than 6,100 field plots that were available for use as model training data. We developed several 
floristic analysis tools to allow us to objectively evaluate and prioritize the review of association 
labels. The tools were also used to help guide the development of mapping associations (Section 
2.3). They are briefly described below. 

Species cover match tool 
Associations, and the map classes we developed from them, are defined by their floristics, their 
physiognomic structure, and their position along multiple environmental gradients. We developed a 
tool called species cover match (SCM) to provide a quantitative representation of the degree of fit of 
a plot to the floristic and (to a lesser extent) structural aspects of a class, and to flag plots that were 
outliers within the class to which they were assigned. Generally, these resulted from field crews 
having encountered vegetation communities that had not been treated in Crawford et al. (2009), from 
mixed species lists due to heterogeneous plots combining multiple vegetation patches, from artifacts 
relating to hard breaks in the keys, or from differing crew interpretations of how significantly to 
weight different components of the association descriptions.27 

 
25 For example, we treated the genus Arnica as three taxa for analysis: a sub-genus group A. latifolia+, containing A. 
latifolia, A. longifolia, and a taxon identified in the field as A. alpina; another sub-genus group A. mollis+, 
containing A. mollis, A. parryi and a taxon identified as A. amplexicaulis; and a distinct species A. cordifolia. Genus-
level records were assigned to one of the three based on species co-occurrence data. 
26 Henceforth in this report, both actual taxonomic species and the sub-genus groups defined here may be referred to 
simply as species, for simplicity. 
27 For example, the description for Alnus rubra/Polystichum munitum stated that “the herb layer is always dominated 
by Polystichum munitum,” and also that it “occurs on upland slopes” and “is [a] result of succession after 
[disturbance].” On encountering a plot on an upland slope initiated by disturbance that lacked Polystichum munitum 
dominance but otherwise matched the description, some crews would emphasize the setting and decide it was a good 
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SCM used the R vegclust package (De Cáceres et al. 2010) to compute the multivariate floristic 
distance of each of the 4,100+ full-ocular plots from the centroid of each class, as defined by the plot 
labels.28 In order to more closely align the analysis with the emphasis on vertical stratification in the 
NVC, we weighted the cover values of each SCM taxon by a lifeform-specific29 multiplier, applied to 
the transformed and standardized cover values.30 To approximate the NVC’s structural emphasis, we 
calculated total cover for each lifeform and for all vascular vegetation,31 and incorporated those in 
the analysis as if they were additional taxa. 

Partial species cover match tool 
Class labels on partial-ocular plots could not be evaluated reliably using SCM and vegclust, because 
they didn’t include true absence data (i.e., crews may have simply omitted a species). To evaluate 
these plots, we developed the partial species cover match tool (pSCM), which compared the SCM 
taxon cover estimates for partial-ocular plots to expectations derived from the class constancy and 
cover tables computed from full-ocular plots. The tool output a similarity metric between each 
partial-ocular plot and each class, and could be used in several different modes. 

Three options were available to control the functioning of pSCM: full mode versus partial mode, 
cover mode versus presence mode, and lifeform mode versus no-lifeform mode. In full mode, pSCM 
penalized absences of taxa that were characteristically present in a vegetation class, while partial 
mode ignored these and so allowed for more missing information. In cover mode, cover estimates for 
a taxon that were significantly greater or less than the average cover for the class were penalized, 
while in presence mode only the presence or absence of a taxon was considered. In lifeform mode, 
lifeform totals were used in the similarity estimate, in addition to taxon cover estimates. Any 

 

enough match, while others would put more emphasis on the insufficient Polystichum munitum and choose another 
alternative. Since the key required 5% or more cover of Polystichum munitum, that might often have been used to 
resolve the question. Using the full species list to make these decisions results in many fewer such ambiguities. 
28 For this analysis, we transformed percent cover via a modified exponential equation (resulting in rapid changes of 
the transformed value in the indicative 2–10% cover range) to mimic breaks in the original association keys and 
allow the multivariate data-driven results to maintain as much compatibility with the keys as possible. We then 
standardized with respect to the mean and standard deviation of each species across all plots. 
29 We assigned all taxa to the following lifeform categories: broadleaf tree, conifer, tall shrub, standard shrub, dwarf 
shrub, forb, grass, sedge, rush, fern, fern ally, bryophyte and lichen (see INR 2021b). 
30 We used a multiplier of 2.0 for conifer and broadleaf tree species, and 1.5 for tall and standard shrubs. All other 
lifeforms had a multiplier of 1.0. In order to give more weight to taxa that were instrumental in defining the 
Crawford et al. (2009) associations, the multiplier for each SCM taxon was increased from its lifeform default 
proportionally to its maximum constancy in any mapping association, up to a maximum of 0.5 for taxa that were 
always present in an association. 
31 For purposes of lifeform totals, broadleaf trees and conifers were split into two vertical categories, GT5 (height 
over five meters) and LT5 (height less than five meters, or regen). Lifeform and total vascular cover were 
transformed using a sigmoidal curve to emphasize change in the region of 10% cover, in keeping with treatment of 
these thresholds in the original association keys. 
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combination of modes from the three options could be selected, allowing tailoring of the assessment 
to the amount of information available at a plot. 

Differential indicators tool 
Finally, we also developed a differential indicators tool (DIT) which we used to determine which of 
two classes was a better fit to a plot based only on the presence of the documented SCM taxa. For 
each present taxon, DIT calculated the ratio between its constancy in two selected classes. Each ratio 
was clamped at a maximum value of 10 before taking its square root. The transformed ratios were 
averaged across all present taxa and compared between the two classes, with the class giving the 
highest average ratio favored. 

SCM, pSCM and DIT were all used to assist in determining the best calls at plots, depending on the 
sampling effort at the plot. SCM was primarily used during the earlier plot QC stages while we were 
still ironing out the mapping associations, while pSCM and DIT were used more in the later phases, 
especially at MORA where full-ocular plots were in short supply. The ability to label partial-ocular 
plots confidently was extremely helpful at increasing the available training data for modeling less 
common map classes at all parks. 

2.3. Mapping associations and plot label QC 
Although the following steps are written in sequential order, the processes occurred in tandem. The 
development of mapping associations and the quality control of plot association calls were strongly 
iterative processes. We have attempted to describe the steps with a minimal number of references to 
other parts of the process, but to some extent that has been unavoidable. 

2.3.1. Mapping associations definition and floristics-based plot QC 
Early drafts of the vegetation maps were based, with minor adjustments, on the vegetation alliances 
defined by NatureServe (2012), which in turn were based on associations defined by Crawford et al. 
(2009). Model error rates (see Section 2.7.5) and preliminary comparison of draft maps from MORA 
(in 2011) and OLYM (in 2013) to independent accuracy assessment data (see Section 3) indicated 
that the maps were falling well short of accuracy goals. As discussed in Section 1.2.1, it became 
evident through working with the training plots that making field calls based on dichotomous keys 
had resulted in a noisy dataset that may not always have correctly responded to the intentions of 
Crawford et al. (2009). Another source of error may have been the ongoing evolution of the 
classification itself during the fieldwork. Regardless, in some portions of the classification, the 
associations—as defined by the groups of plots assigned to them—lacked the needed floristic 
cohesion to support repeatable field identification and accurate mapping. 

By early 2015, when mapping plot data collected at NOCA were delivered to INR, more than 4,100 
field plots with reasonably complete species composition data were available across the three parks 
for use in floristic calibration. This significantly exceeded the information that had been available for 
the development of the earlier classification. We used the cumulative dataset to enhance the 
classification for floristic consistency and mapping purposes, creating a set of mapping associations. 
Despite their differences, the NCCN parks share many dominant plants and plant communities. We 
took advantage of this commonality, so each park benefitted from plots collected across the network. 
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We began by reviewing full-ocular plots with SCM. Plots that were significantly more similar to a 
different association than that to which they were assigned were examined to determine why their 
floristics differed from expectations. We checked field photos, plot descriptions, imagery and 
environmental setting, and changed the call to the association suggested by SCM if the balance of 
evidence supported that. For classes that were strongly defined by their vegetation structure (e.g., 
krummholz), we were more lenient in allowing floristic outliers to persist. 

The process was applied iteratively: as plot QC continued, the analysis was occasionally updated, 
tightening the floristic groupings as the number of outliers was reduced in each cluster. In this 
manner, we refined the Crawford et al. (2009) associations while minimizing changes to their 
essential character. SCM was also used to suggest a best call at plots for which no confident call had 
been previously made. 

We continued the revision process by eliminating problematic types from the mapping associations. 
Beginning with the original 311 upland and 50 wetland types, we removed (a) associations with 
fewer than two floristic calibration plots;32 (b) associations distinguished from others based solely on 
total vegetative cover, either cumulative or in a single layer;33 (c) associations named and defined 
based on the presence of a single common species (often a dwarf shrub such as Vaccinium 
deliciosum or Juniperus communis), regardless of the other vegetation present;34 and (d) associations 
that were excessively heterogeneous in species composition (as represented in the floristic calibration 
plots), occurring in a variety of settings.35 

We used SCM to reassign affected plots to the next most similar vegetated association, which was 
usually a very good fit. In addition to eliminating associations and merging their plots with similar 
types, we developed new mapping associations for groups of plots that were either poorly 
represented in Crawford et al. (2009) or had become badly tangled in the floristic calibration plots. 
These groups included dry shrublands, dry subalpine and alpine meadows, vegetation of talus slopes 
and avalanche chutes, riparian and wetland shrublands, and seral post-fire vegetation. We created the 

 
32 These had often been included in Crawford et al. (2009) based on literature from areas adjacent to the NCCN 
parks. We retained one association with only one plot, Populus tremuloides/Cornus nuttallii, because of its 
distinctiveness and the clear range limitation that prevents it from being more widespread in the parks. 
33 Two examples in Crawford et al. (2009) are the associations labeled as “bryophyte and lithomorphic sparse 
vegetation,” keyed under a break based on the total vascular cover, and the three depauperate understory forest 
associations, keyed on overstory species and low understory vascular plant cover. 
34 Most plots assigned to these calls were small and represented a localized patch of the species in question. 
Generally these patches did not correspond to any meaningful landscape pattern, but simply reflected the stochastic 
dispersal and establishment processes of the single species, superimposed on a variety of background vegetation 
types. 
35 Typically, these associations—which were termed catchalls by field crews—resulted from key artifacts. They 
were recognized by their tendency to model with a variety of map classes, depending on the other vegetation present 
in addition to the species on which the key had focused. 



 

29 
 

new associations by clustering all plots assigned to an association in each of the groups with the R 
vegclust package (De Cáceres et al. 2010).36 

Forests with depauperate understories provide a good example of the sorts of changes we made to the 
classification. These plots—usually in seral stands, but occasionally in older forests on valley 
bottoms—were originally lumped into associations based solely on the tree canopy species present, 
but we found these often did not model and map well together.37 DIT and pSCM were helpful in 
making the best use of the understory floristic data, even if plants only occurred in trace amounts. For 
mapping purposes, the identities of the species present were much more important than how much 
ground they covered. For instance, we found that a trace amount of Orthilia secunda was a consistent 
indicator of the most common successional mid-slope silver fir association. Silver fir plots with 
equally sparse understories that lacked O. secunda typically had moist site indicators instead, and had 
closer floristic and modeling similarities to lush silver fir associations found on lower slopes. The 
plots simply represented unusually sparse manifestations of those usually lusher types. 

Our classification efforts resulted in a total of 228 mapping associations in the large NCCN parks. 
Nielsen and Brunner (2021) provide descriptions, including floristic and distribution details, as well 
as more information about the process of creating the associations from the original classification. 

2.3.2. Mapping associations refinement and model-based plot QC 
We also prioritized examination of individual plots using model results to identify plots that modeled 
better as an association different than their current assignment.38 Plots that modeled poorly had often 
been noted as problematic by the field crew and were generally in heterogeneous areas, in very small 
patches, or had mismatched structure and floristics (frequently due to disturbance; e.g., a forest that 
had experienced a blowdown event and was now dominated by shrubs, but with understory species 
more typical of a forest). Other plots that modeled poorly had been mislocated due either to extreme 
GPS error or data entry errors; there was considerable feedback between association-level modeling 
and the spatial QC described in Section 2.1.2. 

An occasional outcome of plot-level model-based QC was a decision that a plot should not be used in 
modeling because of a poor match to any association, an uncertain location, or both. These plots were 

 
36 We log-transformed raw percent cover data for each SCM taxon and normalized across sites using the decostand 
function in the R vegan package (Oksanen et al. 2019) before using k-means clustering in vegclust. We 
experimented with the number of output clusters until the results captured a similar level of detail to that used 
elsewhere in the classification. 
37 Depauperate conditions occur in the stem-exclusion phase of a range of successional forest types, and can persist 
for over a century in the Pacific Northwest (Agee 1993, p.193). Thus, seral forests can be impossible to place 
definitively into classifications relying on understory species composition, and can be easily confused with very 
distinct valley-bottom stands that are similarly depauperate (Franklin et al. 1988, p.126). 
38 We did this by creating random forests models (see Section 2.7.5) at the association level, examining the 
cumulative out-of-bag error associated with each plot, and noting the alternate associations with which it was most 
frequently confused. 
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often still useful in refining the classification’s approach to disturbance or in identifying range 
extensions of associations known primarily from another park. Throughout the process, we 
incorporated these observations into refined descriptions of the structure, setting and range of each 
mapping association. 

2.3.3. Final plot check with a hybrid assemblage labeling tool 
In the above QC steps, we considered floristic and modeling similarities separately and only 
examined plots that failed to pass some test by a significant threshold. After development of the 
mapping associations had been completed, we used a final check—the hybrid assemblage labeling 
tool (HALT)—which considered the floristics and modeling analyses simultaneously to spot 
instances where both pointed in the same direction, but perhaps at a lower level of certainty. HALT 
enabled us to detect and reassign about 50 plots to an association that was a better overall fit. 

The QC process, while lengthy, accomplished several critical steps toward development of the map 
classification and the associated map: (a) development of an association-level classification with high 
internal cohesion in both floristics and modeling tendencies; (b) development of clear descriptions of 
floristics, structure and setting for those associations; and (c) allowing maximum use of all plot data 
by improving the consistency of association calls on all plots, and particularly by assigning reliable 
calls to partial-ocular plots. 

2.4. Map classification 
2.4.1. Development of vegetated map classes 

Building crosswalk 
The low accuracies of early draft maps indicated that changes to the alliance concepts were needed. 
A crosswalk to combine mapping associations into floristically cohesive and mappable entities 
provided the structure around which revisions were organized. We used the draft alliances from 
NatureServe (2012) and their relationship to the associations in Crawford et al. (2009) as a reference 
point during the revision process. 

Our goal in this process—described in greater detail in Brunner et al. (2017)—was to minimize class 
confusion, both during field interpretation and in the map. Our approach was data-driven, using a 
quantitative proxy for each of these confusion types. As a proxy for field confusion, we used floristic 
similarity, since the more floristically similar two classes are, the less likely field observers will agree 
on the correct label for a plot. SCM, described in Section 2.2.4, provided an easy way of quantifying 
this at the plot level. To represent map confusion, random forests model confusion was clearly the 
appropriate proxy, as that was the means by which we planned to produce the map.39 The main 
constraint we placed on the process was to follow the NVCS protocol of a many-to-one crosswalk 
between mapping associations and map classes, in which each association was a member of a single 

 
39 We quantified model confusion as the out-of-bag error rate for a plot in a model attempting to discriminate 
between a pair of associations, built from the plots assigned to either of them. The R randomForest package (Liaw 
and Wiener 2002) provides this information as an optional ‘votes’ table output. See Sections 2.5–7 for background 
in the modeling process. 
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map class. In order to foster consistent map class definitions across NCCN parks, we aimed to use 
the same crosswalk for each of the mapping projects. 

We began by identifying common and distinct mapping associations, emphasizing those that 
represented the cores of alliance concepts from NatureServe (2012). We used these as seeds for 
initializing map classes. If possible, we selected associations that were present at all NCCN parks in 
order to provide a common thread. If this was not possible, and we were confident about the 
relatedness of floristically dissimilar associations, we occasionally initialized map classes using a 
different association at each park. We did this in the case of vegetated balds, which are characterized 
by a common structure and setting but whose constituent species vary significantly with geography. 

We then used an agglomerative process to grow the map classes from their seeds. At each step, we 
computed the level of floristic and modeling similarity (termed joint similarity hereafter) between 
each unassigned association and each nascent map class, by aggregating plot-level data.40 We found 
the association–map class pair with the greatest pairwise joint similarity and joined them by 
assigning the association to that map class in the crosswalk. Association–map class similarities were 
recalculated after each assignment, and the next most similar pair found. The process resulted in 
maximizing within-class similarity and minimizing between-class similarity, allowing more 
confident discrimination in the field and more reliable mapping. 

Early in the process, assignments were easy because many associations clearly belonged together 
based on both floristics and modeling. The decisions became more difficult later. When we 
encountered associations whose floristic and modeling tendencies pointed to different map classes, 
we emphasized the floristics, unless some overriding structural or setting-based criterion was 
available to assist in field identification. When different patterns of similarity were observed at 
different parks, we made our decision based on the park where the majority of association plots 
occurred. Occasionally we went back to the plot data to unravel problems. 

Associations that fit poorly to existing map classes were added as new classes if they represented a 
distinguishable concept and had enough plots to support modeling. It then occasionally become 
apparent that other associations that had already been assigned had a stronger affinity for the new 
class. The iterative process continued until all associations had been assigned. 

Refining crosswalk 
After the crosswalk was formed, we recalculated association-wide model similarity to each full map 
class, again from plot-level data. We re-examined associations that were a better fit to a map class 
other than the class with which they had been lumped. We often found that this mismatch arose from 
plots that were floristically distinct from most others assigned to the association. These outliers 
usually were easily recoded on an individual basis to an alternate association, but in several cases we 
found associations that contained a full subset of plots that were similar to each other but distinct 

 
40 We computed similarity by aggregating plot-level data at each step because some plot-level QC was ongoing 
during this process and this prevented our needing to run random forests again with every change.  
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from the rest. We formed new associations with these plot subsets and moved them to a different 
map class. Nielsen and Brunner (2021) includes several examples of these new associations. 

In many cases, map class occurrences were confined to only one41 or two42 of the NCCN parks, 
which presented no challenge to the crosswalk since the constituent associations were also absent. 
However, occasionally a map class was present in a park, but with too few plots from which to 
construct a model of its distribution. In these cases, we lumped the constituent associations with the 
most similar map class that was mappable at that park.43 These are the only cases where the 
crosswalk between association and map class differs between parks. 

In general, the outcomes of the crosswalking process confirmed our belief that unless aberrant 
vegetation structure was present, modeling tendencies and full floristic character tended to track each 
other extremely well. By maximizing the floristic distinctions between the map classes, we 
simultaneously created a highly mappable classification. The description for each map class in 
Nielsen et al. (2021c) contains a list of its component associations. 

2.4.2. Development of other map classes 

Natural sparse and abiotic map classes 
Classification and mapping efforts were primarily focused on vegetated communities, but sparsely 
vegetated and abiotic areas occupy a large proportion of each NCCN park. To fill these areas of the 
map, we developed map classes that were simple for field crews to discriminate but would provide 
useful habitat context. We developed a “rock-dominated” set of map classes distinguished by the 
geomorphological origin of the mineral substrate, including R71–ALLUVIAL BARREN AND DEBRIS-
COVERED ICE, R72–COLLUVIAL BARREN and R73–BEDROCK BARREN. We also developed an “H2O-
dominated” set of classes composed of W81–FRESH WATER and W82–EXPOSED SNOW AND ICE.  

Disturbed and cultural map classes 
Several other map classes were created to handle areas of uncertain vegetation impacted by recent 
fires or anthropogenic disturbance (the latter most often in the mapped buffer around the park). In 
this category were M92–BURNED WITH UNCERTAIN VEGETATION, M93–TIMBERLAND WITH UNCERTAIN 

VEGETATION, M94–DEVELOPMENT and M95–ROADS IN PARK. Details on discriminating these and the 
preceding types are contained in the map class descriptions (Nielsen et al. 2021c). 

 
41 Examples included H63–ALPINE BUCKWHEAT PUMICE VEGETATION (MORA only), C02–REDCEDAR, LABRADOR-
TEA, SLOUGH SEDGE AND SPHAGNUM BOG (OLYM only), and C22–SUBALPINE LARCH WOODLAND (NOCA only). 
42 Examples included C03–SITKA SPRUCE, WESTERN HEMLOCK AND WOOD-SORREL FOREST (absent at NOCA), H57–
GREEN FESCUE DRY MEADOW (absent at OLYM), and H52–COW PARSNIP MEADOW (absent at MORA, at least at 
mappable patch size). 
43 Examples included B33–UPLAND RED ALDER, BIGLEAF MAPLE AND CONIFER FOREST (treated as S45–VINE MAPLE 

SHRUBLAND at MORA) and H56–SUBALPINE SUMMER-DRY GRASS-FORB MEADOW (treated as H57–GREEN FESCUE 
DRY MEADOW at NOCA). 
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2.4.3. Resulting map classification 
The map classes present in the MORA map are summarized in Table 3. See Nielsen et al. (2021c) 
for detailed map class descriptions, an explanation of the map class name coding system, and 
crosswalks to two other prominent classifications of vegetation at Mount Rainier, Franklin et al. 
(1988) and Henderson (1974). 

Table 3. Map classes present in the MORA map, the other NCCN park maps in which they appear, and 
the number of training plots called to each at MORA. 

Map class code and full name Other parks Plot count 

C03–Sitka spruce, western hemlock and wood-sorrel forest OLYM 11 

C04–Moist western hemlock, Douglas-fir and foamflower forest NOCA, OLYM 62 

C05–Western hemlock, Douglas-fir and sword fern forest NOCA, OLYM 100 

C06–Western hemlock, Douglas-fir and salal forest NOCA, OLYM 67 

C10–Moist silver fir, western hemlock and foamflower forest NOCA, OLYM 68 

C11–Mesic silver fir and western hemlock forest NOCA, OLYM 117 

C12–Silver fir, hemlock and Alaska blueberry forest NOCA, OLYM 57 

C13–Mountain hemlock, silver fir and Cascade azalea forest NOCA, OLYM 85 

C14–Silver fir, big huckleberry and beargrass forest NOCA, OLYM 85 

C15–Lodgepole pine and Douglas-fir woodland NOCA, OLYM 0 

C20–Subalpine fir and Sitka valerian forest and woodland NOCA, OLYM 133 

C21–Mountain hemlock, subalpine fir and heather woodland NOCA, OLYM 42 

C23–Mount Rainier subalpine fir and whitebark pine woodland – 46 

C26–Conifer krummholz and treed cliff NOCA, OLYM 34 

B30–Successional gravel bar shrubland NOCA, OLYM 43 

B31–Broadleaf riparian and swamp forest NOCA, OLYM 40 

S40W–Low elevation shrub-dominated wetland NOCA, OLYM 24 

S41W–Subalpine willow wetland NOCA, OLYM 9 

S43–Sitka alder shrubland NOCA, OLYM 32 

S45–Vine maple shrubland NOCA, OLYM 35 

S47–Successional huckleberry shrubland NOCA, OLYM 62 

S48–Subalpine heather shrubland NOCA, OLYM 74 

S49–Alpine heather shrubland NOCA, OLYM 50 

H50W–Lowland marsh and meadow NOCA, OLYM 32 

H51W–Subalpine herbaceous wetland NOCA, OLYM 51 

H53–Showy sedge and Sitka valerian meadow NOCA, OLYM 77 

H56–Subalpine summer-dry grass-forb meadow OLYM 52 

H57–Green fescue dry meadow NOCA 60 

H58–Bedrock balds and sparsely vegetated forest openings NOCA, OLYM 9 

H60W–Black alpine sedge wetland NOCA, OLYM 21 

H62–Alpine sparse herbaceous vegetation NOCA, OLYM 34 
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Table 3 (continued). Map classes present in the MORA map, the other NCCN park maps in which they 
appear, and the number of training plots called to each at MORA. 

Map class code and full name Other parks Plot count 

H63–Alpine buckwheat pumice vegetation – 11 

H64–Alpine lupine pumice vegetation – 14 

R71–Alluvial barren and debris-covered ice NOCA, OLYM 55 

R72–Colluvial barren NOCA, OLYM 71 

R73–Bedrock barren NOCA, OLYM 29 

W81–Fresh water NOCA, OLYM 81 

W82–Exposed snow and ice NOCA, OLYM 22 

M92–Burned with uncertain vegetation NOCA, OLYM 0 

M93–Timberland with uncertain vegetation NOCA, OLYM 0 

M94–Development NOCA, OLYM 0 

M95–Roads in park NOCA, OLYM 0 

 

Development of the NVC for the Pacific Northwest continued on a somewhat parallel track to ours, 
as we worked on finalizing the mapping associations and map classes presented here. We compared 
the relationship of our mapping associations and map classes with the hierarchical placement of the 
related associations in the most recent NVC update, USNVC (2019). At the NVCS group level, there 
is good correspondence, with our map classes mostly composed of associations that are members of a 
single group, or of an amalgam of associations from groups that are poorly represented in the project 
area and do not overlap with other map classes. There is less congruence at the alliance level, with 
one cause being that our map classes are generally less beholden to dominance and encompass a 
broader range of indicator species. Forests are somewhat more finely delineated in map classes than 
the current NVC alliances, but non-forests are a bit more coarsely lumped. Structural characteristics 
appear to be more important in distinguishing forested map classes than the corresponding alliances, 
but less important in distinguishing dwarf shrubland and herbaceous map classes. 

2.4.4. Descriptions 

Summary and setting narratives 
The map class summary and setting paragraphs in Nielsen et al. (2021c) were compiled from plot-
level floristics, vegetation structure data, summarized environmental variables and expert knowledge. 
We edited the narratives to reflect park-specific characteristics and added observations based on the 
final map and plot data. Representative plot photos were selected for each class; these were generally 
obtained from the park in which it was most common. 

Floristics tables 
We generated constancy and cover information for each of the resulting map classes, based on the 
complete set of full-ocular plots across the three parks. Because of the large number of records that 
were uncertain at the species level, we used the SCM taxa described above (and documented in INR 
2021b) instead of species as the taxonomic units for the analysis. We used the tables generated to 
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assign descriptive names to the map classes. Each map class description in Nielsen et al. (2021c) 
contains a condensed version of the constancy and cover results. 

Indicator species analysis 
Although we relied on the tools described above (SCM, pSCM and DIT) to reliably discriminate 
between map classes on the basis of plot floristics, those tools will not be available to field workers 
unless they are carrying a mobile device. As an alternative, we created a park-specific list of 
indicator species that are helpful for distinguishing each pair of map classes, which we have included 
in Nielsen et al. (2021c) for pairs that are likely to be occasionally confused. 

We derived indicators from the constancy and cover data. Presence indicators are SCM taxa that are 
significantly more likely to be present in one of the map classes than in the other, based on the 
constancy tables. We rated the strength of presence indicators by the constancy ratio between the two 
classes and put those ratings on a comparable scale for both sides of each map class pair. Cover 
indicators are taxa that are likely to occur in significantly greater abundance in one of the classes 
than in the other, based on the cover tables. We prioritized listing taxa that occur reasonably often in 
the favored map class, but in some cases only less common taxa are good indicators. For this reason, 
we listed a significant number of indicators. Lack of presence of an indicator is not evidence against 
a map class; however, absence of taxa listed as occurring at high frequency in the floristics table for a 
map class can be construed that way. 

2.4.5. Key 
We have mentioned several times the difficulties we encountered with field plots that had been 
assigned to association based on a dichotomous key (see Section 1.2.1 and elsewhere). However, 
although “the key is not the classification” (Crawford et al. 2009), it is where a typical user will start. 
In our map class key (Brunner et al. 2021), we aimed to provide as much help to a field user as 
possible without leading them astray by oversimplification. We strongly urge users who have keyed 
to a map class to carefully consult the map class description, including the indicators for closely-
related alternate classes. 

Much of the key was built using automated methods such as multivariate hierarchical clustering via 
hclust (R Core Team 2018) and classification trees via rpart (Therneau et al. 2015). Because setting 
and structural characteristics are easiest for a non-botanist to identify, we prioritized them in the key 
where possible, mostly at higher levels. At the lower levels (e.g., within conifer forests), the breaks 
were mostly determined by floristics. We transformed plot species composition information into 
binary true/false characteristics based on presence, prominence, dominance of individual species and 
functional groups (e.g., broadleaf trees, total vascular cover), relative abundance (e.g., cover of Acer 
circinatum significantly greater than that of Alnus viridis), and quantifiable setting variables (e.g., 
south-facing). We used rpart to determine the optimal structure and best key break variables based 
on pools of samples drawn from the full-ocular plots, assuming these decisions would translate to 
new plots encountered in the field. 

To help keep users from taking a wrong turn based on a single criterion, we added additional floristic 
and setting-based characteristics at most breaks to lend additional confidence. The additional criteria 
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were pulled from surrogate variables in the classification tree, from a break-specific indicator species 
analysis using the R indicspecies package (De Cáceres and Legendre 2009), and from setting and 
structure notes. After each break was written, it was applied to the current plot pool and the resulting 
subdivided pool was fed into the next break. We minimized misclassification by only including 
criteria that correctly classified 95% or more of the plot pool entering the break; we tried to find a 
way to shepherd the misclassified plots home later in the key. The key was validated in the office 
with over 200 field plots per park and was also briefly tested in the field. 

2.5. Independent data selection and pre-processing 
We used an implementation of the random forests machine learning algorithm (Breiman 2001) to 
predict map class from field training data (discussed in Sections 2.1–4) and wall-to-wall independent 
predictor data. We used several broad categories of predictor data: (a) four separate years of aerial 
imagery from the National Agricultural Imagery Program (NAIP); (b) satellite imagery from the 
Landsat-8 and Sentinel-2 satellites, collected during multiple distinct seasons; (c) topographic and 
hydrologic metrics developed from lidar data and standard digital elevation models; (d) climate 
normals over the period 1981–2010; and (e) vegetation canopy information from lidar data. Several 
other types of potential predictor data—soils, surface geology, and geological landform information, 
infrastructure development locations, and maps of fire history—were considered for use and 
ultimately rejected. These layers had poor spatial registration or were incomplete or inconsistent over 
the project area. We felt their use would result in mapping artifacts and add little predictive power, 
since correlated information was available already in the other predictors. Table 4 summarizes the 
data sources with their spatial resolutions and the dates to which they apply. The selection, 
acquisition and pre-processing of the data are described in the sections that follow. 

Table 4. Sources of predictive modeling layers. 

Data type 
Spatial 
res (m) Data source 

Applicable 
timeframe(s) 

4-band color-infrared aerial imagery 1 National Agriculture Imagery 
Program, State of Washington 

2009, 2011, 2013, 
2015 

Historic mid-summer image, Landsat-5 30 USGS (2019a) Aug 23, 1985 

Current mid-summer image, Sentinel-2 10, 20 USGS (2019a) Aug 16, 2016 

Current minimum-snow image, Landsat-8 30 USGS (2019a) Sep 27, 2015 

Elevation 10 USGS (2019b) – 

Climate normals ~800 PRISM Climate Group (2019) 1981–2010 

Lidar bare earth and highest hit elevation 1 Watershed Sciences, Inc. 2008 

 

2.5.1. Aerial imagery 
We acquired 4-band color infrared NAIP imagery as uncompressed quarter quads from four separate 
collections, in 2009, 2011, 2013, and 2015. The 2015 imagery was the main recent data source 
allowing mapping at 3-meter resolution. However, deep shadows which lowered mapping accuracy 
often occurred north of steep slopes (Figure 6 illustrates this with an excerpt from NOCA). Because 
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the shadow locations varied between image collections, we mitigated this problem by combining the 
best-illuminated portions of each into a mosaic. 

 
Figure 6. Aerial imagery with untreated shadows. The deep shadows seen in this 2015 NAIP imagery 
would interfere with accurate mapping unless treated. 

Correction of 2015 imagery 
We mosaicked the uncompressed quarter quads from each NAIP collection and generated aerial 
imagery metrics (Section 2.6.1). Making use of topographic information (Section 2.6.3), we then 
built a predictive model to identify shadows in the 2015 imagery by digitizing shadow and non-
shadow training data, identifying shadows using a random forests model, and iteratively selecting 
additional training data to home in on problem areas. When satisfied with the results, we converted 
the shadow mask to a shapefile and buffered each feature by a variable distance, using a formula that 
yielded a buffer area roughly proportional to the size of the feature. Our hypothesis was that over a 
given region, the histogram of pixel values for each image band within corrected shadows should 
resemble that within the adjacent unshaded areas. We broke the project area into overlapping tiles, 
derived a crosswalk between shadow pixel values and corrected values based on matching the 
shadow and buffer histograms, and applied this to all shadow pixels. Figure 7 illustrates a resulting 
corrected image. 
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Figure 7. Aerial imagery with histogram-matched shadows. Here the shadowed areas have been 
matched to the surroundings. 

Image merging and correction 
Although shadow pixel values in the corrected 2015 image showed reasonable correspondence to the 
underlying land cover, lack of direct illumination resulted in a major reduction in local variance 
which could not be corrected. Because of the importance of high-resolution texture in accurate 
identification of land cover types (see Section 2.6.1), we incorporated an additional method of 
shadow treatment. We applied the model generated from 2015 imagery to the other imagery years, 
yielding shadow/non-shadow masks for each year. These masks were used to produce a merged 
image by selecting the first non-shadowed year from the sequence (2015, 2013, 2009, 2011) subject 
to the condition that if a given pixel was located within the digitized fire perimeters (Section 2.1.2), 
only imagery collected after the fire year could be selected. The year 2011 had lowest priority in the 
merge sequence because high snowpack that year obscured the ground and delayed vegetation 
development at high elevations through much of the summer. The merged image replaced many of 
the shadows in the 2015 image with illuminated data from other years. Although the spectral 
characteristics differed somewhat from year to year due to the lack of radiometric normalization in 
NAIP data, we felt that for modeling purposes the result was far superior to leaving the shadows 
untreated. The areas that were shadowed in all imagery years were corrected using the procedure 
applied to the 2015 imagery above. The resulting image, suitable for generating texture metrics 
(Section 2.6.1), is shown in Figure 8. 
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Figure 8. Aerial imagery merged across years. Here the shadowed areas have been filled with data from 
the 2009–13 images. Areas shadowed in all images were matched to the surroundings. 

2.5.2. Satellite imagery 
We searched the image archive at GLOVIS (USGS 2019a) for cloud-free Landsat-5, Landsat-8, and 
Sentinel-2 images collected between early June and late September in all years since 1982. Images 
from outside that seasonal window were mostly snow-covered or had very low sun angles and were 
not useful for vegetation mapping. In the map training fieldwork phase, a Landsat-5 image collected 
on July 26, 2004 was used to guide sampling and produce field map sheets. A midsummer Sentinel-2 
image collected on August 16, 2016 was used as the primary satellite image for modeling. A 
Landsat-8 image collected on September 27, 2015 was also used in modeling, since it had the 
minimum snow cover of any available images, allowing more effective mapping of higher elevation 
areas. Finally, a Landsat-5 image collected on August 23, 1985 served as the starting point for 
historic change detection over the intervening time period. 

All satellite images were converted to at-sensor reflectance (e.g., Chander et al. 2009), and a simple 
dark object atmospheric correction (Chavez 1988) was applied to approximate surface reflectance. 
We developed a novel process for spatial coregistration of the satellite images with the elevation 
dataset. We began by coregistering the minimum-snow image—which showed the greatest 
illumination contrast due to its acquisition at a time of relatively low sun elevation angle—to the 
elevation data. A cosine(i) image of illumination intensity at the time of image acquisition was 
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created based on local slope and aspect; it served as a reference for aligning the satellite near-infrared 
band using the ERDAS Imagine Autosync tool. We then coregistered the midsummer image to the 
minimum-snow image using their respective near-infrared bands. The resulting coregistered images 
were resampled via cubic convolution to a common extent and pixel size. 

The satellite images were then topographically normalized to reduce the effect of variable 
illumination on at-sensor reflectance. We did this via a modified version of the stratified c-correction 
method (Twele et al. 2006), using the normalized difference moisture index (NDMI; Wilson and 
Sader 2002) for stratification of pixels into distinct correction groups. The normalization process 
reduced the effects of shading, causing individual land cover types to exhibit more consistent 
reflectance across the image, regardless of slope and aspect (Figure 9). 
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Figure 9. Sentinel-2 image before and after topographic normalization (upper and lower images 
respectively). Snow and ice appear pink, sparsely vegetated areas green, broadleaved trees and shrubs 
yellow, and conifers reddish-brown. 
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2.5.3. Elevation and climate data 
We downloaded 10-meter resolution elevation data for the project area from the 3D Elevation 
Program (3DEP; USGS 2019b). We also downloaded a range of 30-year monthly climate normals at 
approximately 800-meter resolution from the PRISM Climate Group (2019), including January, 
April, July and October precipitation, minimum and maximum temperature, mean dew point 
temperature, and maximum vapor pressure deficit. For processing efficiency, the elevation data were 
converted to integer format using a vertical unit of 0.25 feet. The climate data were clipped to the 
project area, reprojected and resampled to 30-meter resolution using bilinear interpolation. 

2.5.4. Lidar data 
Lidar data were collected and processed by Watershed Sciences (now Quantum Spatial) of Portland, 
Oregon in the summer and fall of 2008. The collection covered nearly the entire park; only a few 
small areas totaling several hectares along the southeastern park boundary were omitted. Very little 
area outside the park was collected. We used the 1-meter gridded return intensity, bare earth 
elevation and highest hit elevation datasets produced by Watershed Sciences. We did not evaluate the 
point cloud data as the gridded products appeared sufficient for our needs. We mosaicked the tiled 
data into single rasters and found the height above ground of vegetation and other elements by 
subtracting the bare earth elevation from the highest hit (see Figure 10). We converted both 
elevation and height from floating point to integer format for data storage and processing efficiency, 
using vertical units of 0.25 feet for elevation and 0.01 feet for height. 
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Figure 10. Lidar-derived vegetation height, ranging from zero to 200 feet along the color ramp shown. 

An artifact in the vegetation height layer was observed in steep areas, where height values 
proportional to ground slope were found, even in areas completely barren of vegetation. Some high 
and steep cliffs resulted in height artifacts of 100 meters or more. Even on gentler slopes of 30 
degrees or less, invalid height data on the order of several meters occurred frequently. Because of the 
importance of the vegetation height layer for high-resolution mapping, these artifacts presented a 
serious challenge. 

We modeled locations at which artifacts could be expected by comparing local values of both slope 
and height to the median values in a moving window of twice the dimension of the typical maximum 
artifact width. Several related metrics were produced and visually evaluated. The most promising 
were combined and threshold values above which the artifact was generally present were established 
through visual inspection. Flagged pixels were then clumped and sieved, keeping only clumps larger 
than 36 m2, since most artifacts seemed to be at least that size. Height values of the detected artifacts 
were recoded to missing data. 
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Two versions of the filtered height dataset were created, using different values of the artifact 
detection threshold. The first, with a low detection threshold, was used in producing canopy height 
predictor metrics for random forests modeling. This resulted in an aggressive process which erred 
toward over-filtering of the height data, with the intention of assigning missing data areas to adjacent 
vegetation types during the post-processing mapping phase. The second filtered height variant, with a 
higher detection threshold, was used in the polygon segmentation process, which required as few 
areas of missing data as feasible. This resulted in erring toward over-segmentation, as some artifact 
areas were not filtered. However, the more aggressive filter used in the modeling process prevented 
the erroneous height data from being used to assign a vegetation type. In general, the artifact 
detection model appeared to work well at high elevations in open areas but was less successful in 
predominantly forested areas. Canopy metrics were therefore occasionally impacted in forested areas 
on very steep terrain. 

2.6. Predictive metrics 
We used spatial contextual information, variable transformations, and noise minimization techniques 
to produce predictive metrics with stronger relationships to vegetation patterns than the raw 
independent data. The metrics fall into six main categories: metrics derived from aerial imagery, 
satellite imagery, topographic information, hydrologic information, climate data, and vegetation 
canopy characteristics. Each metric category is followed by a table detailing the predictive metrics 
produced from that data source. For each metric, we give an effective resolution. This combines 
characteristics of the data source as well as algorithmic factors to estimate the square dimensions 
surrounding any point over which land cover will influence the metric. It is used later in the predictor 
selection process to simultaneously optimize model error rate and effective spatial resolution (see 
Section 2.7.4). 

2.6.1. Aerial imagery metrics 
A variety of metrics representing spectral response and spatial patterning were calculated from the 
aerial imagery (Table 5). Two main types of metrics were produced. Reflectance metrics, produced 
from the shadow-corrected 2015 image, are based on responses in different spectral bands from a 
single imaged pixel. Texture metrics, produced from the shadow-corrected multi-year merged image, 
are based on local variability in spectral responses, measured across a moving window incorporating 
numerous pixels. The processing is described in greater detail below. 
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Table 5. Aerial imagery-based predictive metrics, the effective spatial resolution at which they respond, 
and a brief description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

r1_md, r1_mx 3 Median and maximum red band value over source pixels 

g1_md, g1_mx 3 Median and maximum green band value over source pixels 

n1_md, n1_mx 3 Median and maximum near-IR band value over source pixels 

u1_md, u1_mx 3 Median and maximum near-IR:green band contrast over source pixels 

v1_md, v1_mx 3 Median and maximum near-IR:red band contrast (NDVI, Rouse et al. 1974, 
Tucker and Sellers 1986) over source pixels 

w1_md, w1_mx 3 Median and maximum red:green band contrast over source pixels 

x1_md, x1_mx 3 Median and maximum green:blue band contrast over source pixels 

y1_md, y1_mx 3 Median and maximum red:blue band contrast over source pixels 

r1a, r1b, r1c 3 Texture metric via filter ‘a’, ‘b’, ‘c’ at 1m resolution on red band 

r2a, r2b, r2c 6 Texture metric via filter ‘a’, ‘b’, ‘c’ at 2m resolution on red band 

r3a, r3b, r3c 9 Texture metric via filter ‘a’, ‘b’, ‘c’ at 3m resolution on red band 

r4a, r4b, r4c 12 Texture metric via filter ‘a’, ‘b’, ‘c’ at 4m resolution on red band 

r6a, r6b, r6c 18 Texture metric via filter ‘a’, ‘b’, ‘c’ at 6m resolution on red band 

r9a, r9b, r9c 27 Texture metric via filter ‘a’, ‘b’, ‘c’ at 9m resolution on red band 

rca, rcb, rcc 36 Texture metric via filter ‘a’, ‘b’, ‘c’ at 12m resolution on red band 

rda, rdb, rdc 54 Texture metric via filter ‘a’, ‘b’, ‘c’ at 18m resolution on red band 

rea, reb, rec 81 Texture metric via filter ‘a’, ‘b’, ‘c’ at 27m resolution on red band 

rfa, rfb, rfc 108 Texture metric via filter ‘a’, ‘b’, ‘c’ at 36m resolution on red band 

gRF, nRF, uRF, vRF, wRF 3–108 
All the above combinations of resolution (R) and convolution filter (F) applied 
to green band, near-infrared band, near-IR:green contrast, near-IR:red 
contrast, and green:red contrast 

ra_13, rb_13, rc_13 3 NDTI of r1a contrasted with r3a, r1b with r3b, and r1c with r3c 

ra_26, rb_26, rc_26 6 NDTI of r2a contrasted with r6a, r2b with r6b, and r2c with r6c 

ra_39, rb_39, rc_39 9 NDTI of r3a contrasted with r9a, r3b with r9b, and r3c with r9c 

ra_4c, rb_4c, rc_4c 12 NDTI of r4a contrasted with rca, r4b with rcb, and r4c with rcc 

ra_6d, rb_6d, rc_6d 18 NDTI of r6a contrasted with rda, r6b with rdb, and r6c with rdc 

ra_9e, rb_9e, rc_9e 27 NDTI of r9a contrasted with rea, r9b with reb, and r9c with rec 

ra_cf, rb_cf, rc_cf 36 NDTI of rca contrasted with rfa, rcb with rfb, and rcc with rfc 

gF_RS, nF_RS, uF_RS, 
vF_RS, wF_RS 3–36 

All the above combinations of convolution filter (F) and two resolutions (R,S) 
applied to green band, near-infrared band, near-IR:green contrast, near-
IR:red contrast, and green:red contrast 

d1c, d2c, d3c, d4c, d6c, 
d9c, dcc, ddc, dec, dfc 3–108 Cross-band contrast between v1c & r1c, v2c & r2c, v3c & r3c, v4c & r4c, v6c & r6c, v9c 

& r9c, vcc & rcc, vdc & rdc, vec & rec, vfc & rfc 

e1c, e2c, e3c, e4c, e6c, 
e9c, ecc, edc, eec, efc 3–108 Cross-band contrast between n1c & r1c, n2c & r2c, n3c & r3c, n4c & r4c, n6c & r6c, 

n9c & r9c, ncc & rcc, ndc & rdc, nec & rec, nfc & rfc 
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Spectral metrics 
Response metrics were produced for the red, green and near-infrared bands of the 1-meter resolution 
imagery. In addition, several vegetation indices were calculated from the raw band values: the 
normalized difference vegetation index (NDVI; Rouse et al. 1974, Tucker and Sellers 1986), and 
parallel contrast metrics between the near-infrared and green bands, and between the green and red 
bands. Each metric was summarized to the 3-meter mapping resolution by taking the median and the 
maximum 1-meter value within each 3-meter modeling pixel. 

Nested texture metrics 
Most information in high-resolution imagery is contextual and expressed in the spatial patterning of 
pixel neighborhoods; the eye’s ability to identify many features based solely on the patterning and 
arrangement of gray-scale brightness values illustrates this point. We devised a method called nested 
texture metrics (NTM) to extract this information and provide it as predictor data to the modeling 
process. The texture metrics represent local variability at a range of pixel resolutions corresponding 
to distinct spatial scales at which various vegetation and landscape features occur. 

Each of the spectral metrics described above was first median-aggregated44 to a variety of coarser 
resolutions (2, 3, 4, 6, 9, 12, 18, 27, and 36 meters). We then used three different 3x3-cell45 
convolution filters to extract different aspects of patterning from each of the aggregated datasets as 
well as the original 1-meter dataset: (a) standard deviation of the center cell and the eight nearest 
neighbor (8NN) cells; (b) a ‘speckle’ filter, the absolute value difference between the center cell and 
the median of the 8NN, divided by the median of the 8NN and then smoothed by an additional 3x3-
cell median filter; and (c) a non-trending variance filter accomplished via an alternating-cell 

convolution kernel �
+4 −5 +4
−5 +4 −5
+4 −5 +4

�. The results were converted to 3-meter resolution by a 

combination of median aggregation and cubic convolution resampling designed to maintain high-
resolution detail. 

Normalized difference texture index 
We developed the normalized difference texture index (NDTI) to minimize the impact of variability 
in view angle and illumination characteristics between flight lines. The index works on the principle 
that because these artifacts affect textures similarly across a range of pixel resolutions, they can be 
partially canceled out by contrasting textures computed at two different pixel resolutions. Texture 
differences remaining after this cancellation result from image patterns at spatial scales intermediate 

 
44 GIS data is typically aggregated to a coarser resolution by taking the mean value of the finer resolution input 
pixels across each of the output pixels. Summarizing by the median value instead reduces smoothing near land cover 
transitions and increases the isolation of scale-dependent texture signals. 
45 The term cell is generally synonymous with pixel, but we mean it to convey a more abstract conception—
generally in the context of a data-processing algorithm—than that conveyed by pixel, which is usually associated 
with the local contribution to some larger “picture.” 
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between the two resolutions. NDTI metrics were produced by contrasting metrics computed at the 
following pairs of resolutions: 1m/3m, 2m/6m, 3m/9m, 4m/12m, 6m/18m, 9m/27m, and 12m/36m. 

𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑎𝑎𝑎𝑎 =
(𝜎𝜎𝑎𝑎 − 𝜎𝜎𝑎𝑎)
(𝜎𝜎𝑎𝑎 + 𝜎𝜎𝑎𝑎) 

where a and b represent the two source texture resolutions and σ represents the source texture metric 
computed at the given resolution. 

Cross-band contrast metrics 
We produced another set of metrics to contrast corresponding metrics computed on NDVI against the 
red band, and on the near-infrared band against the red band. A formula like that used for NDTI was 
used, based only on the results from the ‘c’ convolution filter. 

2.6.2. Satellite imagery metrics 
We calculated a variety of metrics based on mathematical transformations of the satellite imagery 
(Table 6). The metrics differed somewhat depending on whether the source imagery was obtained by 
Sentinel-2, Landsat-8 or Landsat-5. All applicable metrics were produced for the current midsummer 
and minimum-snow images and for the historic midsummer image, but only those from current 
images were used in modeling. 

Table 6. Satellite imagery-based predictive metrics, the effective spatial resolution at which they respond, 
and a brief description or methodology reference.A Where two resolutions are shown, the first is for 
Sentinel imagery, the second for Landsat. 

Metric name(s) 
Effective 

res (m) Description 

grn 10, 30 Green reflectance: 543–577 nm (Sentinel-2), 530–590 nm (Landsat-8) or 520–600 
nm (Landsat-5) 

red 10, 30 Red reflectance: 650–680 nm (Sentinel-2), 640–670 nm (Landsat-8) or 630–690 
nm (Landsat-5) 

re1 20 Red edge reflectance: 698–712 nm (Sentinel-2 only) 

re2 20 Red edge reflectance: 733–747 nm (Sentinel-2 only) 

re3 20 Red edge reflectance: 773–793 nm (Sentinel-2 only) 

nir 10, 30 Near-infrared reflectance: 785–899 nm (Sentinel-2), 850–880 nm (Landsat-8) or 
760–900 nm (Landsat-5) 

sw1 20, 30 Shortwave reflectance: 1565–1655 nm (Sentinel-2), 1570–1650 nm (Landsat-8) or 
1550–1750 nm (Landsat-5) 

sw2 20, 30 Shortwave reflectance: 2100–2280 nm (Sentinel-2), 2110–2290 nm (Landsat-8) or 
2080–2350 nm (Landsat-5) 

temp 100 Thermal band response: 10.60–11.19 µm (Landsat-8 only) 

ndvi, ndvip 10, 30 Normalized difference vegetation index (Tucker and Sellers 1986) 
A The indices ending in ‘p’ were developed during this work. They were calculated by adding 2 to the 

denominator of the standard formula for the metric, to compensate for index overestimation on dark surfaces 
such as water and deep shadow. 
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Table 6 (continued). Satellite imagery-based predictive metrics, the effective spatial resolution at which 
they respond, and a brief description or methodology reference.A Where two resolutions are shown, the 
first is for Sentinel imagery, the second for Landsat. 

Metric name(s) 
Effective 

res (m) Description 

ndmi, ndmip 20, 30 Normalized difference moisture index (Wilson and Sader 2002) 

ndfi, ndfip 20, 30 Normalized difference forest index = ndvi + ndmi 

nbr, nbrp 20, 30 Normalized burn ratio (Key and Benson) 2002 

ndsi, ndsip 20, 30 Normalized difference snow index (Hall et al. 1995) 

ndgr, ndgrp 10, 30 Normalized contrast between grn and red 

ndng, ndngp 10, 30 Normalized contrast between nir and grn 

ndsw, ndswp 20, 30 Normalized contrast between sw1 and sw2 

tcb 20, 30 Tasseled cap brightness (Kauth and Thomas 1986, Huang et al. 2002) 

tcg 20, 30 Tasseled cap greenness (Kauth and Thomas 1986, Huang et al. 2002) 

tcw 20, 30 Tasseled cap wetness (Kauth and Thomas 1986, Huang et al. 2002) 

di 20, 30 Disturbance index (Healey et al. 2005) 

ndre, ndrep 20 Normalized difference red edge index (Barnes et al. 2000, Sentinel-2 only) 

ccci 20 Canopy chlorophyll content index (Barnes et al. 2000, Sentinel-2 only) 

mcari 20 Modified chlorophyll absorption ratio index (Daughtry et al. 2000, Sentinel-2 only) 

resav 20 Red edge soil-adjusted vegetation index (Cao et al. 2013, Sentinel-2 only) 
A The indices ending in ‘p’ were developed during this work. They were calculated by adding 2 to the 

denominator of the standard formula for the metric, to compensate for index overestimation on dark surfaces 
such as water and deep shadow. 

2.6.3. Topographic metrics 
A variety of metrics describing the influence of local topography on vegetation composition were 
calculated (Table 7). These were derived primarily from the lidar bare earth elevation dataset, except 
in areas beyond that dataset’s extent, where 10-meter resolution 3DEP data were substituted. The 
more complex novel metrics created during this project are briefly described here. 
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Table 7. Topographic predictive metrics, the effective spatial resolution at which they respond, and a brief 
description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

elev 3 Bare earth elevation. 

slope 3 Slope in degrees (Esri 2013). 

east, south 3 “Eastiness” = sin(aspect) and “southiness” = sin(aspect-90°). 

cur6, cur30, cur150, cur750 6, 30, 150, 
750 

3x3-cell total curvature (Esri 2013) from elevation aggregated to 6m, 
30m, 150m and 750m resolution. 

cpl6, cpl30, cpl150, cpl750 6, 30, 150, 
750 

3x3-cell planimetric curvature (Esri 2013) from elevation aggregated to 
6m, 30m, 150m, and 750m resolution. 

cpr6, cpr30, cpr150, cpr750 6, 30, 150, 
750 

3x3-cell profile curvature (Esri 2013) from elevation aggregated to 6m, 
30m, 150m and 750m resolution. 

heat 3 Relative heat load (McCune and Keon 2002). 

raddir, raddur 30 
Direct solar radiation and duration of direct illumination across full year 
(Esri 2013); distinct from heat load in that cast topographic shadows are 
modeled. 

topodry 30 Elevation-scaled heat index = raddir * (1 – (elev / max elev in WA)). 

mp126, mp630, mp3150 6, 30, 150 
Morphometric protection (SAGA-GIS, Conrad et al. 2015) from elevation 
aggregated to 6m over 126m radius, to 30m over 630m radius, and to 
150m over 3150m radius. 

tpp60, tpp300, tpp1500, 
tpp7500 

6, 30, 150, 
750 

Topographic position percentile, the percentile rank of cell elevation 
relative to surrounding elevations within a 60m, 300m, 1500m and 
7500m radius. 

tpmi60, tpmi300, tpmi1500, 
tpmi7500 

6, 30, 150, 
750 

Minimum elevation differential within 60m, 300m, 1500m and 7500m. 
See text for methodology. 

tpma60, tpma300, tpma1500, 
tpma7500 

6, 30, 150, 
750 

Maximum elevation differential within 60m, 300m, 1500m and 7500m. 
See text for methodology. 

cold60, cold300, cold1500, 
cold7500 

6, 30, 150, 
750 

Cold air accumulation calculated over surrounding 60m, 300m, 1500m 
and 7500m. See text for methodology. 

rough3, rough9, rough30, 
rough90, rough270 

1, 3, 10, 
30, 90 

Surface roughness at 3m, 9m, 30m, 90m and 270m scales. See text for 
methodology. 

 

Minimum and maximum elevation differentials 
We devised two multi-resolution metrics to quantitatively represent landform position. Four bisecting 
lines of length 21 times the cell resolution were constructed for each cell, oriented in the N-S, NE-
SW, E-W, and SE-NW directions. The mean elevation along each line was determined, and 
differences between the central cell’s elevation and each of the four means were calculated. The 
minimum of these four differences (minimum elevation differential or tpmi) and the maximum 
(maximum elevation differential or tpma) are relevant with respect to landform position. For example, 
a peak would have high values of both tpma and tpmi, while a level ridgeline would have a high tpma 
and a tpmi near zero. A gap in a ridgeline would have a high tpma and a fairly large negative tpmi. The 



 

50 
 

metrics were calculated at a variety of cell sizes to represent terrain morphology at a variety of spatial 
scales. 

Cold air accumulation 
Cold air accumulation in basins is a major driver of vegetation patterns in mountainous terrain. We 
developed an original approach for simulating this process, using the four elevation differentials 
created above. Locations at which the sum of the elevation differentials across perpendicular axes is 
a negative number have some tendency to accumulate cold air draining from above. The greater the 
magnitude of this negative number, the greater will be the tendency for cold air to enter from above 
and become trapped, and the colder that air is likely to be. 

For the four elevation differentials edNS, edEW, edNESW and edSENW we found the minimum sum of each 
of the perpendicular pairs: 

𝑒𝑒𝑒𝑒⟂,𝑚𝑚𝑚𝑚𝑚𝑚 = min(𝑒𝑒𝑒𝑒𝑁𝑁−𝑆𝑆 + 𝑒𝑒𝑒𝑒𝐸𝐸−𝑊𝑊  ,  𝑒𝑒𝑒𝑒𝑁𝑁𝐸𝐸−𝑆𝑆𝑊𝑊 + 𝑒𝑒𝑒𝑒𝑆𝑆𝐸𝐸−𝑁𝑁𝑊𝑊) 

By analogy with the compound topographic index (Moore 1991)—a hydrologic metric that similarly 
integrates the influence of a size-varying contribution area with the local tendency to disperse that 
input—we represented cold air accumulation at a cell using: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 = ln �
𝑒𝑒𝑒𝑒⟂,𝑚𝑚𝑚𝑚𝑚𝑚

𝑠𝑠 � 

where s is the slope in the downward direction from the cell at the same spatial scale over which the 
elevation differentials were calculated. Cold air accumulation was determined at each of the cell sizes 
for which elevation differentials were produced. 

Surface roughness 
We defined surface roughness as local variability in aspect that is non-trending across an analysis 
window, scaled up by the local slope. The non-trending criterion is important—for example, a 
window centered on a north-south oriented ridgeline would show a strong change in aspect from 
west-facing to east-facing, but this would not indicate surface roughness. To accomplish this, we 

again used the alternating-cell convolution kernel �
+4 −5 +4
−5 +4 −5
+4 −5 +4

�, this time applied to four 

transformations of aspect: sin(𝑎𝑎𝑠𝑠𝑎𝑎), sin(𝑎𝑎𝑠𝑠𝑎𝑎 − 45°), sin(𝑎𝑎𝑠𝑠𝑎𝑎 − 90°) and sin(𝑎𝑎𝑠𝑠𝑎𝑎 − 135°), 
summed these four directional measures of aspect variability, and multiplied by the mean slope 
across the analysis window. Roughness was computed at a range of spatial scales. 

2.6.4. Hydrologic metrics 
The hydrologic metrics were derived from processing within a landscape context rather than from a 
simple pixel-based perspective, since they depend on upstream areas in addition to the immediate 
surroundings. We first created a hydrologic flow accumulation layer based on the bare earth 
elevation, correcting for poorly modeled flow due to lack of information on road culvert locations. 
We used the flow accumulation layer to create a channel network, calibrating it using an NPS 
streams data layer. The channel network was used as an input to a variety of distance metrics 
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describing proximity to channels exceeding various flow thresholds. The predictive hydrologic 
metrics are shown in Table 8. 

Table 8. Hydrologic predictive metrics, the effective spatial resolution at which they respond, and a brief 
description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

vd_drain, vd_perm, vd_major 6 Vertical distance above slope concavities, permanent channels and 
major river networks (Conrad et al. 2015) 

hd_drain, hd_perm, hd_major 6 Horizontal distance to slope concavities, permanent channels and 
major river networks 

dtw 6 Cartographic depth to water index (White et al. 2012) 

wetness 6 SAGA wetness index (Conrad et al. 2015), closely related to 
Compound Topographic Index (Moore 1991) 

upland 6 Log-scaled cost distance to channel network, see text 

 

Flow accumulation and channel networks 
Hydrologic flow accumulation is a spatial representation of the catchment area contributing to flow at 
each gridded location in a drainage network. Its computation was important both as a step in the 
channel delineation process and also as a key input needed to generate several predictive metrics. 
The flow accumulation algorithm in SAGA-GIS (Conrad et al. 2015), when used to delineate channel 
networks, produced anastomosing effects in flat areas and appeared to realistically represent 
hydrologic processes for incorporation into predictive metrics. 

Although lidar data allows flow modeling with much greater spatial detail than a 3DEP DEM would 
permit, this detail can be a source of difficulties as well. For example, where culverts allow water to 
pass under roads and remain in its natural path, modeled flow paths may be blocked and diverted by 
road prisms. We reduced such problems and also eased computation by performing hydrological 
modeling at 6-meter resolution rather than at the full lidar resolution. We reduced the resolution by 
aggregating based on the minimum, setting each 6-meter cell equal to the lowest value of the 36 
constituent 1-meter cells. This resulted in a greatly reduced number of obstructed flow paths in 
subsequent modeling, as compared to aggregating based on the mean. In order to represent the 
impact of spatial precipitation patterns on channel development, we created a weighted grid by 
rescaling PRISM annual precipitation to a fraction of the maximum value in the study area. We then 
filled sinks in the elevation grid, using the Wang & Liu (2006) method with minslope = 0.01, and 
modeled flow accumulation based on the weighted precipitation grid, using SAGA’s Catchment 
Area (Top-Down) method with multiple flow directions and convergence = 1.1. 

Despite the minimum aggregation step above, flow paths along the upslope sides of roads continued 
to be a problem. Mismodeled flow eventually will find its way across the road, resulting in a stream 
in an incorrect location. A roads layer with very high spatial accuracy was needed in order to allow a 
targeted approach for flow correction near roads without compromising the quality of flow paths in 
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other areas. No existing roads layers were sufficient, so we hand-digitized park roads based on the 
lidar slope image. The centers of all existing roads were digitized; old roads were also digitized if the 
prism was still apparent in the slope image. For all areas adjacent to roads, the 6-meter resolution 
elevation was set to the minimum elevation in the surrounding 3x3-cell window, in an attempt to 
route flow downslope across the roads. The sink filling and flow accumulation procedures above 
were then repeated. 

This approach improved flow delineation substantially but did not resolve all road-related flow path 
issues. To solve the remaining problems, we manually digitized short line segments across roads in 
areas where substantial amounts of flow were still being incorrectly routed along roadsides. We 
buffered each connecting segment by six meters and set all overlapping elevation cells to the 
minimum elevation within the buffer. After running the sink filling and flow accumulation 
procedures yet again, most flow path problems appeared to be resolved. 

We used the flow accumulation results to delineate channel networks, also in SAGA-GIS. Three 
alternate channel networks were created from the flow accumulation result. One was calibrated to 
represent visible slope concavities, another to represent permanent channels, and the third to 
represent only unconstrained rivers in major valleys. Various minimum thresholds of flow necessary 
to result in a channel were tested; the resulting networks were visually compared to stream 
representations in USGS 1:24,000 quad sheets. The best match to the represented permanent streams 
was found using a flow accumulation threshold of 40,000, corresponding to an average catchment 
area of about 140 hectares. A threshold of 8,000,000 (corresponding to about 29,000 ha) was used for 
major rivers; this resulted in delineation of channels downstream of the approximate location where 
their floodplains begin to widen substantially. We chose a threshold of 1,000 (corresponding to about 
3.6 ha) for slope concavities, because it produced results that generally matched the representation of 
discernible hollows on the quad sheets. 

Riparian influence and metrics generation 
We devised a metric to express the degree of floristic riparian influence at any location. The first step 
was to determine the total flow quantity associated with each section of the channel network. The 
channel network was broken into discrete channel reaches defined by network intersections. Many 
channel segments were composed of anastomosing flow pathways, in which flow was modeled in 
several adjacent parallel paths; it was therefore necessary to consider the several paths as all 
contributing to a single total flow value. We accomplished this by associating each flow 
accumulation cell with the nearest delineated reach46 and averaging across reach length. 

We classified channel reaches into five categories based on average reach flow, with thresholds 
between the categories spaced in a regular geometric progression ranging from the minimum to the 
maximum channel reach flow in the study area. We then created a cost function to describe the 
degree of riparian influence in the perpendicular direction away from the channel. The cost function 
was proportional to the square of slope, which emphasized slope breaks and was able to represent 

 
46 “Distance” to the reach was evaluated via a cumulative slope cost function. 
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physiographic features such as fluvial terraces and natural levees. We calculated the least cost 
distance from each cell to each of the five channel size categories using this function. 

The riparian influence metric was fit to its practical impact on species composition by examining the 
cost function values at the locations of training plots assigned to riparian vs. non-riparian 
associations. This resulted in an estimate of a cost function cutoff for each of the five flow categories 
that most accurately separated the plots with riparian floristics from those with upland floristics. A 
logarithmic relationship was found to best fit the relationship between the five cost function cutoffs 
and the mean flow quantity across all reaches in each of the five flow categories. We then iteratively 
modified the initial cutoffs until they exactly fit the logarithmic model. For each of the flow 
categories, we assumed that no further floristic riparian influence would be exerted beyond the cost 
distance cutoff. Finally, an “uplandness” index was created using: 

𝑢𝑢𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢𝑒𝑒 = log10 �1 + min �
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where CA..E represent the slope-based cost distances to each of the five flow categories and TA..E 
represent the cost cutoffs used to define the extent of riparian influence for each category. 

2.6.5. Climate metrics  
The climate data required no additional processing to form predictive metrics. The predictors (Table 
9) were simply the 1981–2010 normals provided by the PRISM Climate Group (2019). 

Table 9. Climate predictive metrics, the effective spatial resolution at which they respond, and a brief 
description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

ppt_jan, ppt_apr, ppt_jul, ppt_oct ~800 Average precipitation for month. 

tmax_jan, tmax_apr, tmax_jul, tmax_oct ~800 Average daily maximum temperature for month. 

tmin_jan, tmin_apr, tmin_jul, tmin_oct ~800 Average daily minimum temperature for month. 

tdew_jan, tdew_apr, tdew_jul, tdew_oct ~800 Average daily mean dew point temperature for month. 

vmax_jan, vmax_apr, vmax_jul, vmax_oct ~800 Average daily maximum vapor pressure deficit for month. 

 

2.6.6. Vegetation canopy metrics 
In addition to the 3-meter resolution artifact-filtered vegetation height ht3 and return intensity intens, 
a variety of predictors were formed by summarizing canopy height information over moving 
windows. Other predictors were produced by summarizing over segmented polygons. Table 10 
provides an overview of the metrics representing the vegetation canopy; they are described in greater 
detail below. 
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Table 10. Vegetation canopy predictive metrics, the effective spatial resolution at which they respond, 
and a brief description or reference to a methodology. 

Metric name(s) 
Effective 

res (m) Description 

ht3 3 Local vegetation height 

intens 3 Local return intensity 

ht50 16, 32, 64, 
polygon 

Median height within 9m, 18m and 36m radius circular moving windows and within 
segmented polygons 

dif50 3 Difference between local vegetation height and median height within 9m, 18m and 
36m radius circular moving windows 

htmx 16, 32, 64 Maximum height within 9m, 18m and 36m radius circular moving windows 

ht75, ht88 polygon 75th and 88th percentile height within segmented polygons 

htsd 16, 32, 64, 
polygon 

Standard deviation of height within 9m, 18m and 36m radius circular moving 
windows and within segmented polygons 

htt50, htw50 16, 32, 64, 
polygon 

Median height value of heights of tree-sized (over 5m) and woody-sized (over 
80cm) vegetation, within 9m, 18m and 36m radius circular moving windows and 
within segmented polygons 

cct, ccw 16, 32, 64, 
polygon 

Fractional cover of tree-sized and woody-sized vegetation, within 9m, 18m and 
36m radius circular moving windows and within segmented polygons 

errmn 16, 32, 64, 
polygon 

Canopy elevation relief ratio (see text) within 9m, 18m and 36m radius circular 
moving windows and within segmented polygons 

err88 polygon Canopy elevation relief ratio for 88th percentile height (see text) within segmented 
polygons 

h1b3b 16, polygon 
Height-based NDTI of 1m ‘b’ texture metric contrasted with 3m ‘b’ texture metric, 
summarized over 9m radius circular moving window and within segmented 
polygons 

h2b6b 16, polygon 
Height-based NDTI of 2m ‘b’ texture metric contrasted with 6m ‘b’ texture metric, 
summarized over 9m radius circular moving window and within segmented 
polygons 

h3b9b 16, polygon 
Height-based NDTI of 3m ‘b’ texture metric contrasted with 9m ‘b’ texture metric, 
summarized over 9m radius circular moving window and within segmented 
polygons 

h4bcb 16, polygon 
Height-based NDTI of 4m ‘b’ texture metric contrasted with 12m ‘b’ texture metric, 
summarized over 9m radius circular moving window and within segmented 
polygons 

h6bdb 18, polygon 
Height-based NDTI of 6m ‘b’ texture metric contrasted with 18m ‘b’ texture metric, 
summarized over 9m radius circular moving window and within segmented 
polygons 

h9beb 27, polygon 
Height-based NDTI of 9m ‘b’ texture metric contrasted with 27m ‘b’ texture metric, 
summarized over 9m radius circular moving window and within segmented 
polygons 

hcbfb 36, polygon 
Height-based NDTI of 12m ‘b’ texture metric contrasted with 36m ‘b’ texture 
metric, summarized over 9m radius circular moving window and within segmented 
polygons 
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Basic moving window metrics 
Several summary metrics were generated over circular moving windows of 9-meter, 18-meter and 
36-meter radius. To minimize artifacts near vegetation transitions, most were based on the median 
rather than the mean. 

The predictors ht50, htmx, and htsd were calculated respectively as the median value, maximum value, 
and standard deviation of the heights within the circular window. The height difference between the 
center 3-meter cell and the median height in the surrounding variable-sized window was calculated 
as dif50. 

We created several predictors to describe the height and density of the upper vegetation layers, if 
those layers were present within the circular window. The median tree height htt50 was calculated as 
the median value of the height values that exceeded the tree height threshold of five meters. Rather 
than indicating the height of the dominant vegetation, htt50 describes the height of any tree layer 
present, no matter how sparse it is. The median woody vegetation height htw50 was defined similarly, 
but using a threshold of 80 centimeters, assuming that most height values over that correspond to 
woody vegetation of some kind. Tree and woody vegetation canopy cover (cct and ccw) were defined 
as the fraction of the window with height values over five meters and 80 centimeters, respectively. 

Another descriptor of vertical canopy structure was derived based on the elevation-relief ratio of Pike 
and Wilson (1971). The mean canopy elevation relief ratio errmn specifies the fractional distance of 
the mean canopy height htmn between the minimum htmin (usually zero) and maximum height htmx in 
the focal window. It was computed by: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑢𝑢 =  
ℎ𝑡𝑡𝑒𝑒𝑢𝑢 − ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑢𝑢
ℎ𝑡𝑡𝑒𝑒𝑡𝑡 − ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑢𝑢

 

Most of these metrics were also summarized over polygons, described below. 

Texture metrics 
The NDTI was computed based on the ‘b’ texture metric from the height raster, at the same range of 
spatial scales as described in Section 2.6.1. These metrics represent measures of vertical canopy 
roughness at different horizontal scales. Finer scale NDTI metrics are sensitive to individual trees 
and small canopy openings, while coarser scale metrics are more responsive to variability in overall 
canopy height and larger openings. Several other roughness metrics were investigated, such as 
aerodynamic roughness (e.g., Menenti and Ritchie 1994) and fractal dimension (e.g., Isaaks and 
Srivastava 1988), but the gain in information expected from these metrics appeared to not justify the 
cost and complexity of producing them across the project area. The texture metrics were summarized 
over 9-meter circular moving windows and also over polygons, described below. 

Polygon summaries 
Hypothesizing that forest stands discernible on the basis of canopy structure would provide useful 
mapping units, we applied an automated segmentation process to the canopy height data to break 
forested areas into distinct homogeneous-appearing stands. These polygons were then used as stand-
scale summary units for canopy metrics. Because the polygon-based summaries only incorporated 
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metric values from within each delineated stand, they were immune to the edge effects to which the 
moving window summaries were susceptible.47 

Canopy segmentation descriptors 
Local canopy height provides an obvious primary basis for delineating distinct forest stands, but 
there are two additional needs to produce a useful forest segmentation in Pacific Northwest forests. 
First, the segmentation must be sensitive to horizontal structural characteristics such as variations in 
tree spacing and canopy cover. Second, the process must be nonlinear with respect to height: it 
should be more sensitive to a given shift in canopy height for a stand at the lower end of the height 
spectrum (e.g., hardwoods, young conifer stands) than for tall, mature conifers. We met the first need 
by using a metric describing local variance in height, and the second by creating additional versions 
of the height and variance metrics based on log-transformed height. 

We began with the lightly artifact-filtered vegetation height dataset created during the lidar pre-
processing phase (Section 2.5.4), referred to as vh here. We first created a log-transformed version of 
vegetation height (log(vh)), and then computed a moving window 3x3-cell standard deviation of 
height (σvh) and log-transformed height (σlog(vh)). We then used a 14-meter radius circle as a moving 
window to produce median-smoothed versions of vh, log(vh), σvh, and σlog(vh). The focal operation 
aggregated the descriptors over a small forested area and reduced artifacts remaining in the filtered 
vegetation height dataset. The window size was chosen so that multiple tree crowns would be 
encompassed even in old forests, causing the smoothed metrics to vary only gradually except when 
encountering a significant transition in forest structure. The median-based filter preserved sharp 
boundaries at major transitions, where the use of a focal mean would have resulted in smearing of the 
metrics and consequent inability of the subsequent segmentation to locate boundaries precisely. 

We rescaled the four resulting descriptors to standardized 8-bit values to ensure that all layers would 
receive equal weighting during the segmentation process. Cells with missing data were assigned to 
the maximum 8-bit value of 255. The rescaling was designed so that the highest valid values in each 
descriptor equaled approximately 240. The resulting value gap between valid and invalid data 
ensured that the segmentation process would distinguish areas of missing data from the valid data 
around them. 

Canopy segmentation 
To determine the optimal segmentation parameters, we created a subset of the segmentation metrics 
image for a small but diverse test area, and imported it into eCognition Developer. Its 
multiresolution segmentation method allowed specification of four main parameters: weightings 
(one for each of the input descriptors), scale, shape, and compactness. Through experimentation we 
determined that shape = 0.1 and compactness = 0.9 produced the most realistic and aesthetically 

 
47 In contrast to typical segmentation-based workflows, we did not use polygons as prediction units; we used them 
only to produce additional 3-meter resolution pixel-based predictors using an alternate method for summarizing 
canopy height information. 
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pleasing outputs across the range of the other parameters. Therefore, our main effort was 
concentrated on determining the optimal settings for weighting and scale. 

We ran segmentations using 15 different test sets of weightings for the four descriptors, using a scale 
of 50 for all runs. The test sets were designed to sum to the same value, resulting in similar numbers 
of polygons being created in each run. Examining the resulting polygon sets, we selected ten 
locations with distinct types of transitions in tree-dominated vegetation that were often delineated 
incorrectly, and assessed the number of these transitions correctly flagged in each run. Three sets of 
weightings performed equally well, so we averaged their weightings and performed the test again. 
The averaged combination, with weightings[vh, log(vh), σvh, σlog(vh)] = [8, 6, 6, 4], performed as well or 
better than those it was derived from. We next ran the averaged weightings over a larger test area for 
a range of scale values, gradually reducing it until the size of the resulting polygons had generally 
fallen below the 30-meter resolution of the Landsat imagery that we anticipated would be important 
in later predicting the map class for each polygon. We took this as an indication of an overly fine 
segmentation, and selected the next coarsest value for scale, 40. We then used these parameters to 
segment the entire project area, producing a total (n) of about 280,000 polygons with an average area 
(Ā) of approximately 3500 m2. 

In areas where the descriptor values changed rapidly, eCognition frequently produced multiple 
narrow parallel polygon sections with boundaries perpendicular to the transition direction. These 
generally did not correspond to any actual land cover, and frequently inappropriately connected two 
more distant patches into a single polygon. To address this issue, we filtered the raw polygons to 
eliminate their narrowest sections and merge them with adjacent larger polygons. The width of the 
filtering buffer was chosen to eliminate polygon constrictions, while preserving most linear tree-
dominated patches (e.g., subalpine ribbon forests, riparian woody vegetation). All areas within four 
meters of polygon boundaries were dissolved into the adjacent polygon whose interior portion was 
nearest. This resulted in the elimination of many polygon sections narrower than about eight meters. 
Although portions of some linear features were eliminated in this process, most would not have been 
accurately classified due to their small size in relation to most predictor datasets. The number of 
polygons increased after filtering (n ≈ 385,000; Ā ≈ 2550 m2), because many polygons were broken 
into multiple patches after removal of the connecting constrictions. 

A sample illustration of the final polygons in a forest-dominated area is shown in Figure 11, 
superimposed on lidar-derived canopy height and aerial imagery. The polygons capture the main 
variations apparent in imagery, and successfully discriminate between a range of conifer stands of 
different ages and densities, in addition to more recently disturbed avalanche chutes dominated by 
Alnus viridis with varying amounts of conifer regeneration, small meadow openings, and sparsely 
vegetated areas in a variety of settings. 
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Figure 11. Polygons resulting from segmentation of lidar metrics, superimposed on vegetation height 
(top; color ramp as shown in Figure 10) and false-color NAIP imagery (bottom). 
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Metrics 
Many of the summary metrics discussed above—ht50, htsd, htt50, htw50, cct, ccw, errmn, and the 
texture metrics—were created over the polygons in addition to the moving windows. Some 
additional metrics were created specifically for use with the polygons. The 75th and 88th percentile 
height values within each polygon were determined by repeatedly computing the median of the 
height pixels over the polygons. After finding the first median, ht50 (discussed earlier), all cells with 
heights less than ht50 for the polygon in which they occurred were masked. Taking the median of the 
remaining cells resulted in the 75th percentile height (ht75). The process was repeated once more, 
resulting in the 88th percentile height (ht88). The height of the dominant vegetation layer at most 
sites corresponds well to ht88, so it is useful for discriminating between distinct vegetation 
physiognomies at the polygon scale. Finally, a correlate to errmn was created based on ht88. The 88th 
percentile height elevation relief ratio err88 was computed by: 

𝑒𝑒𝑒𝑒𝑒𝑒88 =  
ℎ𝑡𝑡88 − ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑢𝑢
ℎ𝑡𝑡𝑒𝑒𝑡𝑡 − ℎ𝑡𝑡𝑒𝑒𝑡𝑡𝑢𝑢

 

2.7. Modeling 
We used a machine learning algorithm, random forests (RF; Breiman 2001, Liaw and Wiener 2002), 
to build models for predicting map class presence using the quality-controlled training plots resulting 
from the work in Section 2.3. We used RF because of its tendency to avoid overfitting to training 
data and its ability to isolate signals in noisy datasets (Cutler et al. 2007). The large number of map 
classes, with widely varying quantities of available training data, presented a modeling challenge: 
how to simultaneously produce models that are good at both “easy” prediction tasks (e.g., 
discriminating between low and high elevation types) and “hard” tasks (e.g., discriminating between 
two tall shrubland types occurring in similar settings), while avoiding bias against the rarest classes 
and also making maximum use of all available training data. To address this, we wrapped the RF 
algorithm in a factorial binary process in which each map class was modeled against every other. 
This allowed each model to specialize in distinguishing a single pair of map classes, choosing 
appropriate predictors for that task. During the prediction phase each class “competed” with each 
other class; the class with the lowest cumulative loss margin across all contests at a pixel was 
considered the best answer there. The predictor selection, model creation, and model prediction 
phases discussed below all ran on binary models. 

The vegetation canopy predictors described in Section 2.6.6 could only be produced where lidar data 
were available. This forced us to produce a separate set of models in order to map the sections of the 
project area that lacked lidar. The steps described in Sections 2.7.3–6 were performed twice: the 
lidar run included the lidar predictors, and was used wherever lidar data were available and appeared 
reliable; the no-lidar run left them out, and was used only where lidar data were unavailable or 
unreliable. 

2.7.1. Model predictor data 
All the metrics discussed in Section 2.6 were resampled to a fixed 3-meter resolution grid over the 
coincident extent of all metrics. The resampling method used depended on the data source. We used 
nearest neighbor resampling to maintain the finest resolution possible for all metrics derived from 
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NAIP and lidar; the predictor sampling grid was taken from these rasters to prevent any spatial 
shifting. Satellite imagery was resampled using cubic convolution, which results in less smoothing 
than bilinear interpolation and maintains crisper boundaries. The non-imagery layers were resampled 
using bilinear interpolation. 

2.7.2. Model training data 
Following the quality control process, the training plots represented relatively continuous patches of 
the assigned map class, spanning the full area defined by the plot center location and radius. Any 
patches of alternate types within the plot were assumed to be less than nine meters on a side. Training 
data were created from the predictor metrics by extracting the 3-meter pixel values at 13 points 
distributed across each training circle, with the most distant four points lying on the circumference 
(Figure 12).48 The primary reason for extracting data from multiple locations at each plot was the 
necessity of training models at the same spatial scale at which they were predicted.49 In addition, this 
scheme allowed better representation of the range of predictor variation within each plot, including 
providing training data near transitions to adjacent vegetation types. The assigned association and 
map class calls and the extracted predictor values were then imported into R using functions provided 
by the rgdal package (Bivand et al. 2014). The training data represented 38 distinct map class calls; 
flowing water and impounded water were modeled separately, but were later merged into the single 
map class W81–FRESH WATER. 

 
48 Because the 13 component samples from each plot are not statistically independent, we used only one of the 13 in 
any given random forests tree during the predictor selection and model creation steps. This avoided introducing 
pseudo-replication of training data and preserved the independence of the out-of-bag samples, while making use of 
the predictor variability within each plot. 
49 A commonly used alternative, summarizing predictor data over the plot area, would have introduced artificial 
smoothing into the training data that would not be applicable for predicting onto finer resolution pixels. 
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Figure 12. Training data extraction. Predictors were extracted from the 3-meter resolution metrics at 13 
points distributed across each training circle. The vegetation patch represented was assigned to H53–
SHOWY SEDGE AND SITKA VALERIAN MEADOW; the imagery is color-infrared 2015 NAIP at 1-meter resolution. 

2.7.3. Model binarization 
Each two-class combination of the 38 modeled map classes was treated separately, resulting in 703 
distinct binary models.50 This allowed each model to specialize in a single task—distinguishing two 
classes from one another—and gave us the freedom to treat issues of predictor collinearity more 
sensitively. For example, over the geography defined by all training samples in NOCA, there is a 
very strong negative correlation between elevation and maximum January temperature. But within 
the environmental subspace defined by the training plots assigned to C05–WESTERN HEMLOCK, 
DOUGLAS-FIR AND SWORD FERN FOREST and C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL 

FOREST, those variables are only weakly correlated, with maximum January temperature being a very 
strong predictor and elevation comparatively weak. Using both in a model based on training data 
throughout NOCA would violate standards against excessively correlated predictors. But there is no 

 
50 We handled the computationally intensive process of predictor selection, model creation and model prediction at 
3-meter resolution using three standard desktop computers, each running between three and five instances of R or 
Python simultaneously. They were connected to a network-attached storage device that hosted the training data, 
predictor data, and a shared status file that allowed the processes to distribute the tasks amongst themselves. 
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such violation for the single model C05 versus C06 and to exclude either predictor on this basis 
would unnecessarily reduce the model accuracy. 

2.7.4. Predictor selection 
We developed a novel predictor selection method to use with our multi-resolution predictor datasets, 
which reduced predictor collinearity51 while also optimizing model accuracy, model effective spatial 
resolution, and the efficiency of the prediction process. 

Initial selection 
We used a stepwise variable selection process coded in R, which was based on maximizing RF cross-
validated model accuracy at each step.52 We organized the predictors into ten tiers based on the 
effective spatial resolution at which they were calculated,53 with the finest scale predictors—the 3-
meter resolution NAIP band responses and lidar-derived canopy height—in the first tier. 

At each tier, the process cycled through all available predictors, building 100 forests of 501 trees 
each, with each forest built from a single randomly selected point of the 13 for each plot. For each of 
the two map classes in the model, the out-of-bag error rate54 for each plot, ep, was compiled over 
each of the forests and converted to an estimate of the probability of plot misclassification by a single 
forest.55 This probability estimate was then averaged across all plots to produce an overall error rate 
estimate for the model including the newly introduced predictor.56 The predictor in the tier that 
resulted in the greatest decrease in model error rate was selected; any predictors (in that tier or 
others) with an absolute-valued Spearman rank correlation of 0.8 or greater to the selected predictor 
were eliminated from further consideration. If no predictors within the tier resulted in a decrease in 

 
51 Inclusion of substantially correlated predictors causes RF to overfit to those predictors, which is a major concern 
because our training data were gathered from such a small fraction of the project area. 
52 We considered using a process guided by an importance measure returned by RF, as in Evans and Cushman 
(2009). However, we found that a predictor’s contribution to model accuracy is strongly dependent on which other 
predictors are included, and that an importance measure returned from a model based on all predictors was not 
indicative of its potential utility in a model based on a small subset. 
53 However, despite the availability of high-resolution topography from lidar across much of the park, we considered 
topographic and hydrologic predictors together with mid-resolution satellite imagery—after Sentinel imagery but 
before Landsat—to keep the emphasis on existing conditions as opposed to environmental setting. 
54 RF generates this by testing each tree of the model against the samples that were withheld from creating it. 
55 The expected misclassification by a single forest was of interest because the map was made based on a single 
forest. This step assumed normal distribution of ep across forests. 
56 The model error rate here is defined as the higher error rate of the two modeled classes. By optimizing this 
quantity, rather than the overall (average) model error rate, we kept the error rate of the two classes balanced, which 
was an important assumption made by our prediction method. 
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model error rate, consideration moved to the following tier. After a predictor was selected, 
consideration always moved to the first tier again.57 

Climate variables can act as proxies for geographic location, as they are generally arranged along 
broad spatial gradients. Their use as predictors can present a severe risk of overfitting to training data 
whose collection has been determined more by convenience than by a random sample. Because our 
climate predictors were derived from approximately 800-meter resolution data, they were in the final 
selection tier. We additionally limited models to only one climate predictor, to reduce the likelihood 
of overfitting to our often spatially constricted training data. 

Often there was an inherent tradeoff between accuracy and spatial resolution. If satellite imagery or 
coarser scale texture metrics provide key information that is lacking in finer scale data, their use will 
increase accuracy but will also coarsen the model’s resolution (Figure 13; from lidar run). 

 
Figure 13. Average predictor resolution vs. median relative model error (the error increase attributable to 
leaving out coarser predictors). Predictors finer than 10-m resolution were treated as 10 m here; greater 
averages indicate increasing incorporation of coarser predictors in the model. The data were derived from 
only models with final error of 1% or greater, with a median final error of 3.5%; this would have been 
12.0% using only predictors of 10-m or finer resolution. The best fit line is from a loess smoothing 
function. 

 
57 Because a predictor’s value may not be recognized until a compatible predictor has been included. 



 

64 
 

Predictor switching 
As seen in Figure 13, there is an optimal resolution at which to produce a model, which takes 
advantage of some of the predictive power of coarser resolution predictors, while maintaining 
responsiveness to fine scale vegetation transitions.58 The predictor selection routine described above 
simply tried to minimize model error, but some of this may come at the unnecessary expense of 
coarser resolution. To address the tradeoff between the two, we created a new metric errxres that 
combined both model error and average predictor resolution: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒 + 1%) 

where err is the model error (in percent) and avgres is the average predictor resolution. Starting with 
the predictors selected in the previous phase, we used another R script to drop the last selected 
predictors until the value of errxres was minimized. We then tested each of the remaining predictors, 
finding the model error rate that resulted from substituting any highly correlated predictors for them. 
Any substitutions that resulted in lowering errxres were accepted. The resulting predictor list was 
saved as an alternative set. 

Choosing best set 
To choose between the two sets of predictors produced, we used different decision-making criteria 
depending on whether we wanted to prioritize error rate or mapping resolution for the model. If the 
two map classes in the model were both larger patch size types (e.g., most conifer-dominated map 
classes), or if their environmental envelopes were so distinct that they wouldn’t be found in close 
proximity to one another, we concluded that high spatial resolution in the resulting map was not as 
important as model error rate. In this case, we kept the set of predictors that resulted in the lowest 
error rate. 

For pairs of map classes in which fine grain mapping was a high priority, we kept the predictor set 
that minimized the product 𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒𝑠𝑠(𝑒𝑒𝑒𝑒𝑒𝑒′), where err’ was a transformed version of err that prioritized 
the reduction of model error to 5%, but only gave partial credit for reducing error lower than that.59 
We did this because the training samples were not perfectly pure60 and we wanted to prioritize 
predictor resolution once a low error rate had been achieved. For example, a model to distinguish 
between a meadow and a woodland may have been trained with meadow samples that had occasional 
scattered trees. The best model in this case may have been one with a non-zero error rate against the 
training data. Table 11 lists the most frequently included predictors across all binary models. 

 
58 The assumption is being made that the average spatial resolution of the predictors included in model is related to 
the effective resolution at which it “maps.” Since RF is an inherently non-linear process, this is not necessarily true, 
though it is intuitively appealing. 

59 𝑒𝑒𝑒𝑒𝑒𝑒′ = �  
max �4, (𝑒𝑒𝑒𝑒𝑒𝑒+15)

4
� 𝑡𝑡𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 5 

𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 ≥ 5
 

60 See Figure 12. Small patches where an alternative map class might be preferable are present in many training 
plots.  
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Table 11. Most frequently used predictors in each selection tier (lidar run). Up to ten predictors are shown 
for each tier, provided they were used in at least 2% of the models.A The tables in Section 2.6 provide 
descriptions for each predictor. 

Tier Resolution or type Predictor namesA and number of models in which used (in parentheses) 

1 3 meters c_ht3 (518), c_intens (425), n_d1c (411), n_e1c (308), r_v1_mx (237), r_n1_mx (208), 
r_x1_mx (198), r_u1_md (195), n_v1b (194), r_y1_md (175) 

2 6 meters n_wa_13 (218), n_nc_13 (216), n_nb_13 (213), n_gc_13 (208), n_wb_13 (203), n_wc_13 
(203), n_uc_13 (200), n_rb_13 (199), n_vc_13 (199), n_rc_13 (192) 

3 9–10 meters s_ndgb (210), s_nir (184), n_d3c (107), n_e3c (92), n_g3c (75), n_r3c (65), n_g3a (62), 
n_r3b (61), n_g3b (60), n_n3c (57) 

4 12 meters n_wa_26 (68), n_ua_26 (58), n_vb_26 (52), n_wb_26 (50), n_na_26 (48), n_nb_26 (48), n_d4c 
(46), n_gc_26 (45), n_ra_26 (44), n_uc_26 (43) 

5 18–20 meters s_tcw (98), c_dif50_9 (81), c_htsd_9 (75), c_ccw_9 (71), s_ndmi (67), c_h1b3b_9 (59), s_sw1 
(55), c_errmn_9 (44), c_h3b9b_9 (41), c_cct_9 (37) 

6A topographic t_elev (290), t_tpp7500 (90), t_raddir (68), t_tpma7500 (68), t_topodry (65), t_cpr750 (56), 
t_rough30 (56), t_mp3150 (48), t_tpp300 (48), t_rough3 (41) 

6B hydrologic h_wetness (84), h_vd_major (80), h_hd_major (71), h_dtw (61), h_upland (51), h_vd_perm 
(48), h_vd_drain (36), h_hd_perm (18), h_hd_drain (17) 

10 climate p_ppt_jul (19), p_vmax_jul (19), p_tdew_jul (17), p_vmax_jan (15), p_vmax_oct (14) 
A Predictor names are preceded by a letter indicating to which source group they belong: “c” indicates vegetation 

canopy, “e” is late summer minimum-snow satellite imagery, “h” is hydrologic, “n” is aerial imagery NTM, “p” is 
climate, “r” is aerial imagery reflectance, “s” is summer satellite imagery, and “t” is topographic. 

Additional predictors for abiotic map classes 
Many models for abiotic map classes had a small number of predictors selected, since the most 
obvious difference between these and vegetated types is their lack of vegetation, which is easily 
ascertained from NAIP imagery. While these very simple models worked well under normal 
circumstances, we found that in deep shadows these models often performed poorly. The abiotic 
classes are generally restricted to environments that are easily described in terms of topographic and 
hydrologic metrics. For example, impounded water is found in areas with low slope and high 
topographic wetness, and barren colluvial deposits are found in concave areas with positive 
curvature. We added appropriate predictors to models involving these map classes to make sure they 
remained restricted to reasonable locations. 

2.7.5. Model creation 
We built a random forest of 507 trees for each map class pair,61 using the predictors selected above 
and specifying a sample size for each class equal to the minimum number of training plots available 
for either class.62 The resulting model was saved for use later in the prediction phase. We then 

 
61 39 trees were generated for each of the 13 sample points at each training plot. 
62 When the classes to be predicted are not represented evenly in the training data, the more common class has a 
tendency to be modeled with greater accuracy than the other. This effect can be alleviated by downsampling the 
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estimated model error rates using 1000 bootstrap samples. Each was constructed by holding out one 
plot from the least common class and a proportional number from the most common class, again 
randomly selecting from the 13 sample points available at each plot for both training and test sets. 
Figure 14 illustrates the cumulative probability across error rate for all binary models in the no-lidar 
run. Of the 703 models, 36% had an error rate of zero. Substantial error is concentrated in a fairly 
small number of models; 94% of the models showed less than 10% error. 

 
Figure 14. Error rate across all binary models (no-lidar run). Recall that due to heterogeneity within 
training samples (i.e., “inclusions”), some model error is to be expected. 

Significant model error is highly concentrated in a fairly small number of binary one-versus-one 
models; these are map class distinctions that are more likely to map poorly. Although the accuracy 
assessment (Section 3) provides more definitive metrics of map accuracy, some map classes were 
poorly sampled in accuracy assessment; for those, model error may be useful supplementary 
information. Table 12 lists the 40 models with the highest error rates in the lidar run, used to provide 
map predictions over most of the park. 

 

more common class (see Evans and Cushman 2009). The same technique was used earlier during the predictor 
selection phase. 
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Table 12. Binary models with highest cross-validated error rates (lidar run). 

Map class 1 / Map class 2 (codes and abbreviated names) Error rate (%) 

H60W–Black alpine sedge / S49–Alpine heather 29.1 

C10–Moist silver fir & foamflower / C11–Mesic silver fir & w hemlock 25.8 

C05–W hemlock & sword fern / C06–W hemlock & salal 23.9 

H56–Subalpine summer-dry grass-forb / H57–Green fescue dry meadow 17.6 

H62–Alpine sparse herbaceous / R72–Colluvial barren 17.4 

C12–Silver fir & Alaska blueberry / C14–Silver fir & big huckleberry 16.9 

H60W–Black alpine sedge / H62–Alpine sparse herbaceous 16.9 

C05–W hemlock & sword fern / C11–Mesic silver fir & w hemlock 16.7 

H51W–Subalpine herbaceous wetland / S41W–Subalpine willow wetland 16.6 

H53–Showy sedge & Sitka valerian / S48–Subalpine heather 16.0 

C20–Subalp fir & Sitka valerian / C23–Mt Rainier subalp fir & whitebark pine 15.2 

S48–Subalpine heather / S49–Alpine heather 15.1 

H60W–Black alpine sedge / S48–Subalpine heather 15.0 

R72–Colluvial barren / R73–Bedrock barren 14.7 

C03–Sitka spruce & wood-sorrel / C04–Moist w hemlock & foamflower 14.5 

H62–Alpine sparse herbaceous / S49–Alpine heather 14.3 

C12–Silver fir & Alaska blueberry / C13–Mtn hemlock & Cascade azalea 14.2 

H56–Subalpine summer-dry grass-forb / S49–Alpine heather 14.1 

H51W–Subalpine herbaceous wetland / H53–Showy sedge & Sitka valerian 14.0 

C04–Moist w hemlock & foamflower / C10–Moist silver fir & foamflower 13.3 

H56–Subalpine summer-dry grass-forb / S48–Subalpine heather 13.2 

H57–Green fescue dry meadow / S48–Subalpine heather 12.7 

C13–Mtn hemlock & Cascade azalea / C20–Subalp fir & Sitka valerian 12.6 

C04–Moist w hemlock & foamflower / C11–Mesic silver fir & w hemlock 12.6 

H51W–Subalpine herbaceous wetland / H56–Subalpine summer-dry grass-forb 12.6 

C20–Subalp fir & Sitka valerian / C21–Mtn hemlock & heather 12.5 

S47–Successional huckleberry / S48–Subalpine heather 12.4 

S41W–Subalpine willow wetland / S48–Subalpine heather 11.8 

H53–Showy sedge & Sitka valerian / H57–Green fescue dry meadow 11.7 

C11–Mesic silver fir & w hemlock / C12–Silver fir & Alaska blueberry 11.5 

H51W–Subalpine herbaceous wetland / H60W–Black alpine sedge 11.4 

H53–Showy sedge & Sitka valerian / H56–Subalpine summer-dry grass-forb 11.2 

H50W–Lowland marsh & meadow / S40W–Low elevation shrub wetland 11.1 

R71–Alluvial barren / R72–Colluvial barren 11.0 

R71–Alluvial barren / W81–Fresh water 10.7 

C04–Moist w hemlock & foamflower / C05–W hemlock & sword fern 10.3 

H57–Green fescue dry meadow / S47–Successional huckleberry 10.2 
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Table 12 (continued). Binary models with highest cross-validated error rates (lidar run). 

Map class 1 / Map class 2 (codes and abbreviated names) Error rate (%) 

H53–Showy sedge & Sitka valerian / S47–Successional huckleberry 10.2 

H56–Subalpine summer-dry grass-forb / H60W–Black alpine sedge 9.9 

C10–Moist silver fir & foamflower / C12–Silver fir & Alaska blueberry 9.7 

 

2.7.6. Model prediction 
The map class prediction at each 3-meter pixel was made by evaluating the results of each one-
versus-one model and determining which class had the best overall performance. The “winner” of 
each model was determined using a simple threshold of 50% of the 507 trees. Figure 15 shows the 
outcome of a single binary model in one small area. We accomplished this by creating a round-robin 
schedule of “contests” using the circle method of Reverend Kirkman (1847). Not all models needed 
to be evaluated at each pixel; after a map class had “lost” five contests, it was eliminated from 
contention and any subsequent models including it were skipped. The selection of the “winning” map 
class was made by comparing the total probability loss margin across all models, rather than by the 
number of contests lost, which removed the possibility of tie outcomes. 

 
Figure 15. Binary model prediction example, for the model C10–MOIST SILVER FIR, WESTERN HEMLOCK AND 
FOAMFLOWER FOREST versus C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST. C10 was favored 
mostly on toe slopes and valley bottoms, while C11 was preferred on middle and higher slopes. White 
areas were not predicted because one or both map classes had already been eliminated from contention. 
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Processing made use of the R randomForest (Liaw and Wiener 2002), raster (Hijmans 2018), and 
rgdal (Bivand et al. 2014) packages, and was made more efficient by dividing the project area into 
tiles of approximately 2000 by 2000 pixels each. Each concurrent prediction process loaded the full 
set of predictor rasters for a single tile into memory and evaluated all needed models, tracking the 
number of losses and total loss margin by map class. The results for each binary model and the 
tracking information were copied to the network-attached storage device.63 The total loss margin, 
seen in Figure 16, can be interpreted as a map of model uncertainty. 

 
63 Although multithreaded prediction (using all available CPU cores in a single process) is possible in R, we 
encountered reliability issues with this approach, and also found it was significantly more efficient to use multiple 
single-threaded processes. 
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Figure 16. Prediction uncertainty in the no-lidar run. The predicted class won all contests in areas 
displayed as white. Colors from blue to red indicate that the best class lost at least one contest, by 
increasing amounts. Certainty is lowest where training data were inadequate, especially outside the park. 

After predicting both the lidar and no-lidar runs, we created the final modeled map by using the lidar 
run result wherever it was available and the no-lidar result elsewhere. 

2.8. Post-processing 
The random forests pixel-based predictions were converted into a final map by means of a sequence 
of post-processing steps. We used various approaches, described below, to add additional map 
classes for land cover types within the project area but not represented in training data. A filtering 
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process was then used to convert the pixel-based predictions into a polygon-based map. After that, 
we did a final phase of manual map editing to address observed problems in a few areas. 

2.8.1. Additional map classes 
We defined several additional map classes—M92–BURNED WITH UNCERTAIN VEGETATION, M93–
TIMBERLAND WITH UNCERTAIN VEGETATION, M94–DEVELOPMENT and M95–ROADS IN PARK—to 
represent land cover types that were present in the project area but not in the training data. 

Burned areas 
The tasseled cap wetness index is particularly effective at estimating structural attributes in conifer-
dominated forests (Cohen and Spies 1992). We created a mask of recently burned areas by 
subtracting the tasseled cap wetness calculated from the historic midsummer satellite imagery from 
that calculated from the current midsummer imagery (see Sections 2.5.2 and 2.6.2). We empirically 
determined a change threshold that was effective in flagging areas that had experienced severe burns 
between those dates, restricting the results to pixels within the digitized recent fires mask (Section 
2.1.2). For areas identified as burned, if the model prediction was not a map class associated with 
early recovery from fire64 (e.g., S45–VINE MAPLE SHRUBLAND, S47–SUCCESSIONAL HUCKLEBERRY 

SHRUBLAND), we recoded it to M92–BURNED WITH UNCERTAIN VEGETATION. The burned class 
included post-fire recovery areas as well as recent burns. We assumed that the model prediction 
would generally be an acceptable result for areas recovering from burns earlier than the mid-1980s. 
Because east-side post-fire communities are better represented in the classification and training data, 
burns in west-side forests are more likely to be mapped as M92–BURNED WITH UNCERTAIN 

VEGETATION. 

Development 
A variety of land cover types on both sides of the park boundary are actively maintained by human 
land-use practices (e.g., buildings for residential and commercial purposes, agriculture, roads). We 
designated two map classes to encompass these: M95–ROADS IN PARK (representing roads within the 
park boundaries only) and M94–DEVELOPMENT (representing everything else, including other 
development within the park). 

We began by digitizing the roads and developed areas inside the park (using lidar data where 
available and 2015 NAIP otherwise), as well as major areas of development and agriculture outside 
the park boundary. Hand-mapping was done at 1:4,000 scale; road centerlines were buffered by 
either seven or 14 meters depending on their size. We created a managed areas mask by excluding 
the park and adjacent USFS wilderness from the project area, for use in later steps. 

We added roads outside the park to M94–DEVELOPMENT by resampling the developed land cover 
classes in the 2016 National Land Cover Database (Yang et al. 2018) to our mapping resolution and 
removing areas that lay either outside the managed areas mask or within our digitized development 
and agriculture layer. Areas within the digitized development and agriculture layer were then added 

 
64 We referred to Franklin and Dyrness (1973) in compiling this list. 
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to M94–DEVELOPMENT unless they had modeled as a forest, woodland, or dense tall shrubland, all of 
which can be reasonable map results in those places. Although ponds are a frequent feature in 
developed areas, we excluded them as there was a tendency to erroneously map fresh water in flat 
developed areas with cast shadows from adjacent trees. Digitized developed areas within the park 
were also included in M94–DEVELOPMENT. Digitized roads within the park were included as a 
separate map class, M95–ROADS IN PARK. 

Logging 
We began by flagging disturbed forests, treating the impact of logging similarly to that of fires, by 
thresholding the historic change in tasseled cap wetness to detect areas that had experienced major 
canopy loss since the mid-1980s. We then applied a multi-stage majority filter and excluded areas 
that were smaller than a half-hectare, were within the park or adjacent wilderness areas, or had 
already been assigned to M94–DEVELOPMENT. Because flooding along major rivers was another 
significant cause of forest disturbance, areas that modeled as a typically riparian map class, were 
within five vertical feet of a major river and in a location with high hydrologic wetness (see Section 
2.6.4) were also excluded.  

The remaining disturbed areas were identified as potentially logged and were examined manually to 
remove those that did not appear to be within timber harvest boundaries. The rest were recoded to 
M93–TIMBERLAND WITH UNCERTAIN VEGETATION unless they had modeled as a forest, woodland or 
tall shrubland map class. The timberland class included early seral and planted forests, as well as 
recent regeneration harvests. We assumed that the model prediction would generally be an acceptable 
result for areas recovering from logging earlier than the mid-1980s. 

2.8.2. Filtering 
We converted the 3-meter pixel predictions to a polygon map via a sequence of filtering steps. 
Because lifeform can be predicted at very high accuracy but map classes are less easily distinguished, 
we began with a lifeform-specific majority filter that reassigned each pixel to the most common map 
class of the same lifeform among the neighboring pixels. No pixels were changed to a different 
lifeform than that to which they were predicted during this step. The analysis window ranged from 3-
by-3 to 7-by-7 pixels depending on lifeform. We next addressed fine scale speckle by applying two 
successive 3-by-3 pixel majority filters across all map classes with no lifeform specificity. 

We then moved to filtering based on patch size and shape, beginning by removing very small patches 
of fewer than nine contiguous 3-meter pixels, reassigning pixels in those patches to the nearest 
persisting patches. The shortest distance from each pixel to any neighboring patch was determined 
and the mean depth of each patch (d) was found by summarizing over its constituent pixels. Through 
experimentation, we defined an additional parameter g to describe patch shape: 

𝑎𝑎 = 𝑒𝑒3 2⁄  𝑎𝑎−1 4⁄  

where a is the patch area. While d describes the average width of a patch, g is a shape parameter 
describing the width of a patch compared to its overall size. We then empirically determined map 
class-specific thresholds for d and g; patches for which either parameter exceeded its threshold were 
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kept, while the others were eliminated, assigning the constituent pixels to the nearest adjacent patch. 
This allowed us to filter map classes that often occur in long slender strips (e.g. C26–CONIFER 

KRUMMHOLZ AND TREED CLIFF) differently than those that typically occur over more extensive areas. 
We followed this with a final additional patch size filter, with a map class-specific size requirement 
ranging from nine to 49 pixels (81–441 m2). 

2.8.3. Map editing 
We mapped occurrences of C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND by scouring the 
park, armed with field data, aerial imagery, lidar, and INR and NPS ecologists’ local knowledge, and 
digitizing them at 1:4,000 scale. We scanned the remainder of the polygon map for obvious errors, 
correcting them by hand by either recoding entire polygons or splitting them into pieces first. Issues 
that frequently required correction included areas that had changed substantially over the decade 
since lidar acquisition—especially along flood-ravaged portions of the Carbon and Nisqually 
Rivers—and poor mapping along the edges of roads in the park. We then converted back to pixels 
and ran a final 3-by-3 pixel majority filter to eliminate any stray missing pixels from the map before 
converting back to polygons for the final time. The final map is available in Nielsen et al. (2021d).  
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3. Accuracy Assessment 
3.1. Background 
A map accuracy assessment (AA) determines the degree to which a map correctly represents on-the-
ground conditions (see Lea and Curtis 2010, Congalton and Green 1999). A confusion matrix or 
contingency table tabulates the misassignments found between each possible pair of map classes. The 
information from this matrix is used to draw conclusions about the quality of mapping for each map 
class; the results allow an evaluation of potential map applications and applicable caveats. User’s 
accuracy (UA) and producer’s accuracy (PA) describe two relevant aspects of map accuracy. 

UA is a reliability measure to estimate the probability that the map is correct where a particular class 
is mapped. It is inversely related to the false-positive or commission error (CE) rate (the probability 
of mapping the class where it is not present). Low UA may indicate that a class is over-mapped 
(mapped more often than it actually occurs). It also can be evidence that classes that are particularly 
confused with it are themselves under-mapped (mapped less often than they actually occur). 

PA is a mappability measure to estimate the probability that the map is correct where a particular 
class is found on the ground. It is inversely related to the false-negative or omission error (OE) rate 
(the probability of omitting the class where it is present). Low PA may indicate that a class is under-
mapped. Because PA is relative to the true land cover, rather than the mapped land cover, its 
calculation is dependent on an estimate of the true quantity of the class present in the study area. 
Thus, two distinct estimates of PA can be made. The first, relative to the number of plots found in the 
field, is calculated from a confusion matrix drawn directly from the sampled plots, the sample 
contingency table (SCT). The second, a more meaningful quantity, is scaled to an estimate of the true 
area occupied by each class, the population contingency table (PCT). 

We followed the procedures and formulas provided by Lea and Curtis (2010) for sample design, 
sample protocol, and analysis, to the extent possible.65 NPS standards specify an 80% accuracy goal 
for each individual map class hosting native vegetation communities. In addition to assessing the 

 
65 Project management considerations required doing the field portion of the AA many years earlier than would have 
been ideal. At the time of the AA fieldwork we had yet to create the map classification, and were using a draft 
version of the alliances (NatureServe 2012) and the provisional NVC associations (Crawford et al. 2009), which 
were later discovered to have a number of issues (necessitating our creation of the mapping associations). The early 
draft map we relied on for our sample design in some areas bears little resemblance to the final map. Because we 
recognized the challenges that lay ahead in making the AA data compatible with an as-yet uncompleted 
classification and map, we had no choice but to violate some important guidance from Lea and Curtis (2010), 
relying substantially on later work in the office to arrive at a best call using the final classification. Cognizant of the 
concern that the expertise possessed by team members would not be available to later users, we based our 
assessment solely on field materials that will be available—namely, the map class indicator species lists available in 
INR (2021a). Furthermore, all map production steps undertaken subsequent to the fieldwork—the creation of 
mapping associations, their crosswalk to map classes, changes in the modeling scheme, and (most importantly) post-
processing and map editing—were done without reference to the AA field data, which were not fully processed until 
the final year of the project. 
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class-specific UA and PA against this standard, we used UA and PA in combination to produce an 
estimate of the true area occupied by each class in the park. These estimates were in turn used to 
adjust the overall map accuracy by area-weighting the per-class accuracies; this step was necessary to 
compensate for the stratified random sampling design that guided sample selection. 

3.2. Sample design 
We used a random sampling approach, stratified by mapped class, to select sample locations. The 
map classes had not yet been determined at the time of field sampling, so we targeted areas mapped 
to our understanding at the time of the alliances that were later described in NatureServe (2012). In 
general, our targets represented all natural vegetated classes present in the final map except for C03–
SITKA SPRUCE, WESTERN HEMLOCK AND WOOD-SORREL FOREST, B30–SUCCESSIONAL GRAVEL BAR 

SHRUBLAND, S40W–LOW ELEVATION SHRUB-DOMINATED WETLAND, S41W–SUBALPINE WILLOW 

WETLAND, H50W–LOWLAND MARSH AND MEADOW and M92–BURNED WITH UNCERTAIN VEGETATION. 
However, because several of the targeted alliances were subsequently split or otherwise reorganized 
into multiple map classes, some map classes received significantly less sampling effort than others. 
We also targeted two nominally abiotic classes, R71–ALLUVIAL BARREN AND DEBRIS-COVERED ICE 
and R72–COLLUVIAL BARREN, because they often host a small amount of vegetation and have 
potential for confusion with several vegetated map classes, such as B30–SUCCESSIONAL GRAVEL BAR 

SHRUBLAND and H62–ALPINE SPARSE HERBACEOUS VEGETATION. Accurate mapping of these abiotic 
classes is necessary in order to accurately map similar vegetated classes. While R73–BEDROCK 

BARREN also has the potential for confusion with vegetated map classes, it is difficult and often 
unsafe to access, and we deemed it not a good use of field time to attempt it. All the targeted classes 
were mapped on greater than 50 hectares, corresponding to a sampling goal of 30 plots each (Lea and 
Curtis 2010). 

3.2.1. Inference area 
The AA inference area was defined by buffering park roads and trails by 100 meters.66 This very 
narrow buffer was necessitated by spatial inaccuracies in the park trails data, which often exceeded 
200 meters,67 and the recognition that the true distance from the trail might be as large as the 
summed buffer distance and the local trail spatial inaccuracy. We chose not to use a slope-based cost 
distance model because of concerns about the relative spatial accuracy of the trails layer and the 
topographic data. The resulting region (see Figure 17) spanned 11,759 hectares, 12.3% of the total 
area of the park.68 Because crews were not able to visit the full area in which sample locations were 
generated, we will refer to the targeted sampling region as the attempted inference area (AIA). 

 
66 Restricting the sampling area to these corridors was necessary for safety and efficiency. Some segments of the 
trail network were not included. The single season available for sampling required that field trips be planned for 
maximum efficiency, and some trail segments would have required too much effort to reach or did not fit well with 
other established sampling objectives. 
67 After the 2011 AA fieldwork, but before returning to the field for additional training data collection in 2014, we 
substantially improved the trails data by digitizing problem areas using the lidar bare earth data. 
68 Although this falls well short of the Lea and Curtis (2010) standard, it was impossible to achieve sampling 
productivity goals with a larger inference area (see Table 13 for a summary of the per-class inference area 
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Figure 17. Accuracy assessment inference area. Field samples were acquired within the reached 
inference area, shown in black. The attempted inference area also includes gray-shaded areas which 
were not accessed by field crews. 

3.2.2. Sample selection 
A La Niña weather pattern resulted in exceptionally heavy snowpack that persisted in much of the 
park through the entire summer of 2011, the main year designated for AA fieldwork. These 
conditions made it extremely difficult to obtain an adequate, geographically representative sample 
even for the more common vegetation types. Access to much of the inference area—even many 
lower elevation portions—required traversing higher elevation areas on park trails that were often 
snow-covered. In addition, delayed phenology made identification of some herbaceous vegetation 
communities difficult even into the fall. 

 

proportion). Given limited resources, we chose to prioritize the number of samples collected over expanding the 
inference area. 



 

77 
 

The draft map used for selecting samples was modeled at the polygon level rather than the pixel-
based method we later adopted. We attempted to minimize map class membership ambiguity in the 
samples by locating them some minimum distance from polygons mapped as different alliances. 
Initially, draft map polygons were internally buffered by 44 meters, assuming a 15-meter expected 
maximum field positioning error and a 12-meter allowable map positional error, in addition to the 
half-hectare MMU (see Lea and Curtis 2010). In addition, because crew size limitations prevented 
independent observations for overlapping plots, we began with a minimum separation of 80 meters 
between samples, irrespective of mapped class. 

To make obtaining sufficient samples for each stratum more likely, we generated many more target 
points for each mapped class than the stratum-specific sampling goal. This was necessary because of 
the difficulties in accessing or properly assessing many locations, in addition to the rough terrain 
which made many randomly generated points unsafe or cost-prohibitive to reach. Inaccuracies in the 
GIS trail layer added to the challenge, often requiring substantially longer off-trail ventures than we 
had planned. 

In the first sample generation phase, we attempted to create 100 random sample locations for each 
class subject to the accessibility criteria and the 44-meter internal buffer. For most classes, less than 
100 suitable locations could be found, but if at least twice the sample goal for the class were located, 
we deemed that sufficient. If fewer than twice the sample goal were located for any class using the 
44-meter internal buffer, the minimum buffer to polygon edge was reduced by 11 meters, the 
minimum sample separation was reduced by ten meters, and another sample generation phase was 
performed. This procedure was repeated, with the goal of achieving a bare minimum of 50 targeted 
plots per class. No buffer distances less than 11 meters were used (or 22 meters for tree or tall shrub-
dominated classes), nor were sample locations of any vegetation type placed nearer than 40 meters 
apart. Reduction of the buffers was essential for several forested map classes and for nearly all non-
forest classes. A total of 1,556 accuracy assessment sample locations were generated. 

We assigned a random number to each of the targets generated for each class and coded the targets 
with the 30 lowest numbers within each class as required plots, with the remainder being optional. 
Crews were to plan their field logistics around collecting the required plots for each map class, with 
additional accessible optional plots encountered being sampled if time permitted. This allowed us to 
obtain a spatially representative collection of plots from each class—spreading samples across 
different field trips—without lowering the chances of obtaining an adequate number of samples for 
any. If required plots were found to be inaccessible, additional required plots were designated from 
the remaining optional plots to maintain the goal of 30 plots per class. 

3.3. Field data 
3.3.1. Field logistics 
Fieldwork planning and execution was greatly complicated by the snowpack. As a planning tool, we 
built a predictive snow-cover model based on elevation and aspect, parameterizing it using trail 
segment conditions posted on the park website. The map helped both in determining the optimal time 
window for the work, and in assessing what portions of the park could be prioritized for earlier 
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access. To assist in organizing the tours and tracking the geographic spread of collected samples, we 
divided park trail and road segments into 44 sampling regions with common access points. The 
median elevation of each region was used to sequence the tours to maximize sampling efficiency 
with respect to snow cover. 

INR field crews collected field data from August 21 to September 23, 2011. The short sampling 
window began when snowmelt allowed access to a reasonable portion of the park and lasted until 
incipient winter weather made additional fieldwork unproductive or unsafe. Crews worked in 
staggered shifts of approximately a week each; fieldwork took place continuously except for two 
poor-weather periods. In general, crews worked in teams of one or two individuals. As they moved 
along roads and trails, they sampled every required plot that the day’s logistics and safety factors 
would allow and spent any additional time available sampling optional plots along the route. 
Occasionally we updated the prognosis for achieving the sampling goal for each class based on the 
opportunities remaining in the target pool and reassigned some optional plots to high priority status 
for sampling. 

3.3.2. Field protocol 
Crews navigated to each target location and assessed the surroundings. If transitions to alternate 
alliances were nearby, they moved the plot center to a more homogeneous point in the same 
vegetation type and updated the location using a GPS. If plot centers were not safely accessible and 
high confident assessments of plot location and vegetation call could be made, crews were permitted 
to make their observations from a distance. In this case, they noted the distance and bearing at which 
the plot lay from their observation point. Plots that could not be reached or assessed were discarded. 

We used a half-hectare assessment area for all vegetation types, corresponding to a 40-meter 
assessment radius around plot center. Crews identified the plant associations (if their level of 
experience permitted) or alliances (otherwise) covering at least 20% of the plot area.69 Multiple calls 
occurred frequently in small patch vegetation types dominated by herbaceous plants and dwarf 
shrubs. Although spatial heterogeneity was less of an issue for most forest plots, ambiguity in 
association and even alliance were occasionally encountered, usually due to intermediate 
combinations of understory species or borderline composition situations (e.g., Abies amabilis at or 
near 10% canopy cover). Up to four associations or alliances with a plausible fit to the vegetation 
present were recorded. The crew’s confidence in each call was recorded as high, medium or low. 

A variety of data were collected to assist with subsequent quality control. Cover estimation for a 
fixed set of important indicator species and unvegetated ground components, including all tree 
species and a variety of shrubs, forbs, and graminoids, allowed for subsequent checks on the 
vegetation calls. These estimates, which were collected for plots assessed on-site only, was 
documented using a class-based system, with tree species broken into canopy, sub-canopy, and 
regeneration layer components. The identities of the five most prevalent species in both the shrub and 

 
69 The plant association descriptions and keys (Crawford et al. 2009) and the alliance descriptions that were 
available at the time were provided for this purpose. 
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herbaceous layers were also recorded. Crews noted topographic setting and sketched a diagram 
showing nearby reference points to assist in quality checking plot locations. Finally, they provided a 
brief description of the plot and pros and cons for each of their association or alliance calls. Figure 
18 contains a completed AA field form. 

 
Figure 18. Completed accuracy assessment data sheet, collected in 2011. 

3.3.3. Quality control 
Accuracy assessment plot data went through a quality control process similar to that of map training 
data. During the year following data collection, all plot data were entered into a spreadsheet, and plot 
locations were verified and occasionally adjusted with reference to NAIP imagery and the field 
diagram. The remainder of the QC work was delayed some seven years while plot data from OLYM 
and NOCA—as well as data representing previously unsampled parts of MORA—were collected and 
analyzed, eventually resulting in an NCCN-wide map classification. 
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After the map classification became available, we used the species cover data, plot description and 
diagram, and imagery and map class indicator species (see Section 2.5.3) to label each plot with a 
single best map class call. However, there were two situations in which we allowed some flexibility. 
Sometimes, we were unable to make a single best call because the floristics field data were perfectly 
intermediate between two classes. Both calls were treated as legitimate possible answers at the 72 
plots where this occurred. In another 21 plots, the identified homogeneous patches were so small that 
we anticipated the possibility of a label mismatch when in fact the vegetation was correctly 
predicted. This might result from spatial offset between the GPS location, the layers by which the 
analyst assessed the plot, and the model-based prediction, as well as from filtering the predictions to 
MMU scale. If the boundary with another map class was within ten meters or less of the assessed 
point, we entered that map class as ground truth for a secondary patch. 

Throughout this process, the analyst did not have access to the final map polygons or labels. If a plot 
could not be confidently located or its correct map class could not be narrowed down to at most two 
possibilities, it was discarded. Twenty-nine plots were rejected on these grounds, most of them 
because of uncertain location, extreme heterogeneity, or ambiguity due to the impact of disturbance. 

3.3.4. Field plot totals and reached inference area 
In an attempt to alleviate undersampling of some map classes, additional plots used for AA were 
collected in 2014 and 2019. The 2014 plots were collected under the mapping protocol Q described 
in Section 2.1.1 and later repurposed for AA. The 2019 plots were collected using a protocol similar 
to that for the 2011 plots. Both datasets were subjected to quality control as described above. 
Cumulatively, a total of 734 field plot samples were collected; 705 of them passed the QC process. 
We determined the reached inference area (RIA) by removing from the AIA any route portions at 
least 1 km long and lacking sampled plots (refer back to Figure 17). The RIA totaled 6,555 hectares, 
equivalent to 55.7% of the attempted inference area or 6.9% of the full park. Table 13 gives the 
overall effectiveness at reaching the accessible portions of each field-targeted map class and the 
class-specific inference area fraction. We fell well short of the standard of Lea and Curtis (2010), 
who specify that “a minimum of at least the most accessible 30th percentile of abundant classes 
should be included in even the most difficult of access situations.” That was achieved for only two 
classes, both of which are among the rarest in the park. 
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Table 13. Map class-specific accuracy assessment inference areas. For each class, the mapped area in 
(a) the park, (b) the attempted inference area (AIA) and (c) the reached inference area (RIA), followed by 
(d) the fraction reached of the area mapped in the AIA (a measure of field effectiveness), and (e) the 
fraction of the total mapped area represented in the RIA (a measure of the representativeness of the 
inference area). 

Class code and abbreviated name 
Mapped in 

park (ha) 
Mapped in 

AIA (ha) 
Mapped in 

RIA (ha) 
% of AIA 
reached 

% Rep 
in RIA 

R72–Colluvial barren 5,452 228 141 61.8 2.6 

R71–Alluvial barren 2,409 166 98 58.9 4.1 

H58–Bedrock balds & forest openings 542 54 28 52.7 5.2 

H62–Alpine sparse herbaceous 1,507 126 80 63.2 5.3 

C14–Silver fir & big huckleberry 9,264 983 501 51.0 5.4 

C12–Silver fir & Alaska blueberry 7,034 714 388 54.3 5.5 

S43–Sitka alder 1,994 191 110 57.6 5.5 

H57–Green fescue dry meadow 965 124 54 43.5 5.6 

C13–Mtn hemlock & Cascade azalea 9,581 909 545 59.9 5.7 

C26–Conifer krummholz & treed cliff 788 67 45 67.3 5.7 

S47–Successional huckleberry 1,836 263 119 45.1 6.5 

C21–Mtn hemlock & heather 3,207 359 214 59.4 6.7 

S49–Alpine heather 1,520 143 111 77.6 7.3 

C23–Mt Rainier subalp fir & whitebark pine 1,671 280 129 46.1 7.7 

C20–Subalp fir & Sitka valerian 7,296 1,038 570 54.9 7.8 

S45–Vine maple 1,118 161 96 59.6 8.6 

S48–Subalpine heather 2,040 288 184 64.0 9.0 

C05–W hemlock & sword fern 3,098 515 297 57.7 9.6 

H51W–Subalpine herbaceous wetland 460 76 45 59.4 9.8 

S40W–Low elevation shrub wetland 133 22 13 60.6 9.9 

C10–Moist silver fir & foamflower 4,580 849 457 53.8 10.0 

H53–Showy sedge & Sitka valerian 1,096 194 114 58.9 10.4 

H50W–Lowland marsh & meadow 17 5 2 36.1 10.6 

C11–Mesic silver fir & w hemlock 7,790 1,415 864 61.0 11.1 

H60W–Black alpine sedge 146 25 16 64.4 11.2 

C06–W hemlock & salal 2,396 588 291 49.4 12.1 

B31–Broadleaf riparian & swamp forest 799 174 100 57.2 12.5 

H63–Alpine buckwheat pumice vegetation 255 59 32 54.1 12.5 

B30–Successional gravel bar 705 141 90 64.2 12.8 

C04–Moist w hemlock & foamflower 1,721 451 250 55.5 14.5 

S41W–Subalpine willow wetland 96 27 21 77.1 21.6 

H56–Subalpine summer-dry grass-forb 309 80 69 86.7 22.3 
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Table 13 (continued). Map class-specific accuracy assessment inference areas. For each class, the 
mapped area in (a) the park, (b) the attempted inference area (AIA) and (c) the reached inference area 
(RIA), followed by (d) the fraction reached of the area mapped in the AIA (a measure of field 
effectiveness), and (e) the fraction of the total mapped area represented in the RIA (a measure of the 
representativeness of the inference area). 

Class code and abbreviated name 
Mapped in 

park (ha) 
Mapped in 

AIA (ha) 
Mapped in 

RIA (ha) 
% of AIA 
reached 

% Rep 
in RIA 

H64–Alpine lupine pumice vegetation 146 44 44 100.0 30.0 

C03–Sitka spruce & wood-sorrel 140 77 43 55.7 30.5 

 

3.4. Photo-interpretation 
An additional 121 plots were randomly generated in five mapped abiotic classes that were not 
targeted or were inadequately sampled during the field sampling (R71–ALLUVIAL BARREN AND 

DEBRIS-COVERED ICE, R72–COLLUVIAL BARREN, R73–BEDROCK BARREN, W81–FRESH WATER and 
W82–EXPOSED SNOW AND ICE). These points were photo-interpreted to map class. Although the latter 
two classes were not included in the AA contingency tables, they occupy substantial portions of the 
park and we felt it was important to have an estimate of their accuracy. 

3.5. Sampling outcomes 
A total of 826 sample plots passed the QC process or were photo-interpreted (Figure 19). The final 
coordinates for each plot were used to extract the predicted map class label from the final map. Table 
14 gives, for each targeted map class, the mapped area (in hectares), the number of plots mapped as 
and identified as the class, and the fraction of the sampling goal that was achieved. Small numbers of 
mapped plots result in uncertain estimates of user’s accuracy, whereas small numbers of identified 
plots result in uncertain estimates of producer’s accuracy (and uncertain map area corrections for any 
classes confused with it). 
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Figure 19. Accuracy assessment (AA) plot locations. 705 quality-controlled field-collected AA plots (blue 
dots) and 121 photo-interpreted points for unvegetated map classes (red dots) are shown.  
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Table 14. Accuracy assessment (AA) plot totals. For each class, the mapped area in the park, the 
number of AA plots mapped as and identified as the class, and the fraction of the sampling goal achieved 
(minimum based on mapped and identified plots). The sampling goal was 30 plots per class except for 
H50W, which required only ten. Poorly sampled classes are listed first. 

Class code and abbreviated name 
Mapped area 

in park (ha) 
# of plots 

mapped as 
# of plots 

identified as 
% of goal 
achieved 

S40W–Low elevation shrub wetland 133 1 0 0 

H60W–Black alpine sedge 146 2 2 7 

C03–Sitka spruce & wood-sorrel 140 4 4 13 

S41W–Subalpine willow wetland 96 5 7 17 

H50W–Lowland marsh & meadow 17 2 2 19 

C21–Mtn hemlock & heather 3,207 8 9 27 

B30–Successional gravel bar 705 8 9 27 

H58–Bedrock balds & forest openings 542 10 9 30 

H51W–Subalpine herbaceous wetland 460 11 11 37 

H57–Green fescue dry meadow 965 12 14 40 

S45–Vine maple 1,118 13 16 43 

H62–Alpine sparse herbaceous 1,507 15 14 47 

H63–Alpine buckwheat pumice vegetation 255 14 14 47 

H56–Subalpine summer-dry grass-forb 309 17 15 50 

C23–Mt Rainier subalp fir & whitebark pine 1,671 16 15 50 

B31–Broadleaf riparian & swamp forest 799 15 15 50 

S48–Subalpine heather 2,040 16 19 53 

H64–Alpine lupine pumice vegetation 146 16 16 53 

S43–Sitka alder 1,994 22 18 60 

C06–W hemlock & salal 2,396 20 23 67 

C04–Moist w hemlock & foamflower 1,721 21 24 70 

H53–Showy sedge & Sitka valerian 1,096 22 21 70 

C26–Conifer krummholz & treed cliff 788 21 21 70 

S47–Successional huckleberry 1,836 22 24 73 

S49–Alpine heather 1,520 29 23 77 

C05–W hemlock & sword fern 3,098 31 29 97 

C12–Silver fir & Alaska blueberry 7,034 36 34 113 

R71–Alluvial barren 2,409 34 34 113 

R73–Bedrock barren 4,442 38 35 117 

C14–Silver fir & big huckleberry 9,264 37 45 123 

C13–Mtn hemlock & Cascade azalea 9,581 37 39 123 

C11–Mesic silver fir & w hemlock 7,790 57 44 147 

C20–Subalp fir & Sitka valerian 7,296 46 47 153 
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Table 14 (continued). Accuracy assessment (AA) plot totals. For each class, the mapped area in the 
park, the number of AA plots mapped as and identified as the class, and the fraction of the sampling goal 
achieved (minimum based on mapped and identified plots). The sampling goal was 30 plots per class 
except for H50W, which required only ten. Poorly sampled classes are listed first. 

Class code and abbreviated name 
Mapped area 

in park (ha) 
# of plots 

mapped as 
# of plots 

identified as 
% of goal 
achieved 

C10–Moist silver fir & foamflower 4,580 49 52 163 

R72–Colluvial barren 5,452 54 57 180 

 

The sampling goal of 30 samples per mapped class, needed for a confident assessment of UA, was 
achieved for only ten of the 35 classes included in the AA. Four classes (S40W–LOW ELEVATION 

SHRUB-DOMINATED WETLAND, H60W–BLACK ALPINE SEDGE WETLAND, H50W–LOWLAND MARSH AND 

MEADOW and C03–SITKA SPRUCE, WESTERN HEMLOCK AND WOOD-SORREL FOREST) had less than five 
mapped occurrences sampled. The success rate for identified plots, needed for a confident assessment 
of PA, was similar. Only nine of the classes were identified at least 30 times. The same four classes 
that were poorly sampled from the UA perspective were also poorly sampled for PA. One class, 
S40W–LOW ELEVATION SHRUB-DOMINATED WETLAND, was not identified at all. 

On the other hand, four classes were significantly oversampled. For R72–COLLUVIAL BARREN, this 
resulted from adding a PI sample to an already significant field sample. The oversamples of the other 
classes—C10–MOIST SILVER FIR, WESTERN HEMLOCK AND FOAMFLOWER FOREST, C11–MESIC SILVER 

FIR AND WESTERN HEMLOCK FOREST, and C20–SUBALPINE FIR AND SITKA VALERIAN FOREST AND 

WOODLAND—resulted from fieldwork being redirected to less snowbound areas at montane 
elevations and in the rain shadow respectively. Although the plan had been to remove plots 
corresponding to types that had been adequately sampled from the crew’s target lists, there were 
difficulties in implementing the plan given limited office time between field tours. Crews themselves 
were not able to steer away from oversampled types because they were unaware of the alliance label 
attached to each point. 

3.6. Analysis 
A total of 35 classes were included in the AA contingency tables, including all classes hosting natural 
vegetation communities except for C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND, which was 
mapped only in digitized known locations. Three nominally abiotic classes (R71–ALLUVIAL BARREN 

AND DEBRIS-COVERED ICE, R72–COLLUVIAL BARREN and R73–BEDROCK BARREN) were also included; 
field sampling permitted a confident assessment of their accuracy and they often provide important 
habitat both for unmappably sparse plant communities and for wildlife populations. The other two 
classes for which most AA samples were photo-interpreted70 were excluded from further analysis. 
We noted that the 63 samples mapped as these classes indicated a user’s accuracy of 100.0%, but felt 
that because there was little field-sampling and they generally do not host natural vegetation 
communities, their inclusion would artificially inflate the overall accuracy. The five classes that were 

 
70 W81–FRESH WATER and W82–EXPOSED SNOW AND ICE. 
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mapped via PI or deductive modeling71 were also excluded from further analysis. Two field-sampled 
plots fell into one of these classes; both were correctly mapped. A total of 761 plots, 695 of them 
field-collected, remained in the analysis. 

The predicted map class was extracted from the 3-meter pixel at each plot center point and compared 
to the quality-controlled map class calls. For plots with two best calls, we allowed either as a correct 
answer; 24 of these 72 plots were counted as correct because the map matched the second of the two 
best calls. For plots with a secondary patch call within ten meters of the assessed center point, we 
also allowed that as a correct answer.72 Of these 21 plots, four were called correct based on matching 
the secondary patch call. If the plot was counted as incorrect, it was labeled as the first best map class 
call from the primary patch. 

The sample contingency table was created by indexing the observed map class against the predicted 
map class for each plot and summing across all plots. User’s accuracy was calculated for each map 
class by dividing the number of correct samples by the total number of samples mapped as that class. 
Overall sample-based map accuracy was calculated by dividing the total number of correct calls by 
the total number of samples; however, this measure is misleading as it is biased by the use of the 
stratified random sampling design, which does not sample map classes in proportion to their 
prevalence in the project area (sample-based PA are similarly biased). The resulting SCT is shown in 
INR (2021a). The overall accuracy based on the raw samples is 86.9%. 

To address the bias introduced by the stratified random sample design, a population contingency 
table (PCT) was created by reweighting the proportions represented by the cells in each row of the 
SCT by the fraction of the reached inference area mapped to that class. Each cell of the PCT, rather 
than containing raw sample counts, represents the estimated proportion of the RIA that is mapped as 
the class defined by the cell’s row and identified as the class defined by the cell’s column. We 
recalculated PA and overall accuracy based on the PCT; the revised measures represent the best 
estimates of the results that would have been obtained had the AA sample design been based on a 
simple random sample. The resulting PCT is shown in INR (2021a). The overall accuracy, after 
correcting for map class prevalence in the inference area, is 83.3%. Note that the mapped areas in the 
table sum to 6,236 hectares rather than the 6,555 hectares contained in the RIA. The seven classes 
excluded from the analysis were mapped on the remaining portion of the RIA. 

The kappa coefficient, which provides an accuracy measure that accounts for the probability of map 
class agreement by chance alone, was calculated. Kappa is a proportion ranging from 0–100%, where 
a value of zero indicates a map that is no more accurate than would be expected by chance alone. 
90% confidence intervals were calculated for all accuracy estimates. Finally, a corrected area 

 
71 C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND, M92–BURNED WITH UNCERTAIN VEGETATION, M93–
TIMBERLAND WITH UNCERTAIN VEGETATION, M94–DEVELOPMENT and M95–ROADS IN PARK. 
72 This was intended to partially address nonthematic errors resulting from spatial misregistration (Foody 2002). 
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estimate was created for each map class by multiplying the sum of the proportions in each column by 
the total mapped area of all the map classes in the PCT. 

The class-specific user’s accuracies are summarized in Table 15. The accuracy estimate met the 80% 
standard for 29 of the 35 map classes. However, for only 14 was the 90% confidence interval entirely 
above the 80% mark. Three of the six that failed to meet the standard were poorly sampled. Only two 
classes, C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST and C12–SILVER FIR, HEMLOCK AND 

ALASKA BLUEBERRY FOREST, were conclusively demonstrated to fail to meet the standard via the 90% 
confidence interval. 

Table 15. Map class-specific user’s accuracy (UA) for each assessed map class, with poorly mapped 
classes first. Asterisks indicate true values that are at least 90% confident to lie either fully above or 
below the 80% accuracy target. 

Class code and full name 
# of plots 

mapped as 
UA 

estimate 
UA 90% conf 

interval 

S40W–Low elevation shrub-dominated wetland 1 0% NA 

C12–Silver fir, hemlock and Alaska blueberry forest 36 61%* 46–76% 

C11–Mesic silver fir and western hemlock forest 57 63%* 52–75% 

C21–Mountain hemlock, subalpine fir and heather woodland 8 75% 44–100% 

H57–Green fescue dry meadow 12 75% 50–100% 

S49–Alpine heather shrubland 29 79% 65–93% 

S43–Sitka alder shrubland 22 82% 66–98% 

H53–Showy sedge and Sitka valerian meadow 22 82% 66–98% 

C10–Moist silver fir, western hemlock and foamflower forest 49 84% 74–93% 

C06–Western hemlock, Douglas-fir and salal forest 20 85% 69–100% 

H58–Bedrock balds and sparsely vegetated forest openings 10 90% 69–100% 

S48–Subalpine heather shrubland 16 88% 71–100% 

H56–Subalpine summer-dry grass-forb meadow 17 88% 72–100% 

C13–Mountain hemlock, silver fir and Cascade azalea forest 37 86% 76–97% 

C05–Western hemlock, Douglas-fir and sword fern forest 31 87% 76–99% 

H50W–Lowland marsh and meadow 2 100% 75–100% 

H60W–Black alpine sedge wetland 2 100% 75–100% 

S45–Vine maple shrubland 13 92% 76–100% 

C04–Moist western hemlock, Douglas-fir and foamflower forest 21 90% 78–100% 

C14–Silver fir, big huckleberry and beargrass forest 37 89% 79–99% 

H62–Alpine sparse herbaceous vegetation 15 93% 79–100% 

R73–Bedrock barren 38 89%* 80–99% 

C23–Mount Rainier subalpine fir and whitebark pine woodland 16 94%* 81–100% 

C20–Subalpine fir and Sitka valerian forest and woodland 46 91%* 83–99% 

C26–Conifer krummholz and treed cliff 21 95%* 85–100% 
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Table 15 (continued). Map class-specific user’s accuracy (UA) for each assessed map class, with poorly 
mapped classes first. Asterisks indicate true values that are at least 90% confident to lie either fully above 
or below the 80% accuracy target. 

Class code and full name 
# of plots 

mapped as 
UA 

estimate 
UA 90% conf 

interval 

S47–Successional huckleberry shrubland 22 95%* 86–100% 

C03–Sitka spruce, western hemlock and wood-sorrel forest 4 100%* 88–100% 

S41W–Subalpine willow wetland 5 100%* 90–100% 

B30–Successional gravel bar shrubland 8 100%* 94–100% 

R72–Colluvial barren 54 98%* 94–100% 

H51W–Subalpine herbaceous wetland 11 100%* 95–100% 

H63–Alpine buckwheat pumice vegetation 14 100%* 96–100% 

B31–Broadleaf riparian and swamp forest 15 100%* 97–100% 

H64–Alpine lupine pumice vegetation 16 100%* 97–100% 

R71–Alluvial barren and debris-covered ice 34 100%* 99–100% 

 

The class-specific producer’s accuracies, obtained from the PCT, are summarized in Table 16. The 
accuracy estimate met the 80% standard for 27 of the 34 evaluated map classes (PA could not be 
estimated for S40W–LOW ELEVATION SHRUB-DOMINATED WETLAND, which was not found in the 
field). However, for only 15 of them was the 90% confidence interval entirely above the 80% mark. 
Only one class, C12–SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST, was conclusively 
demonstrated to fail to meet the standard. 

Table 16. Map class-specific producer’s accuracy (PA) for each assessed map class, with poorly mapped 
classes first. Figures are taken from population contingency table. Asterisks indicate true values that are 
at least 90% confident to lie either fully above or below the 80% accuracy target. 

Class code and full name 
# of plots 

identified as 
PA 

estimate 
PA 90% conf 

interval 

S40W–Low elevation shrub-dominated wetland 0 NA NA 

C12–Silver fir, hemlock and Alaska blueberry forest 34 62%* 48–75% 

H57–Green fescue dry meadow 14 64% 43–85% 

S41W–Subalpine willow wetland 7 66% 34–99% 

C10–Moist silver fir, western hemlock and foamflower forest 52 71% 61–82% 

C06–Western hemlock, Douglas-fir and salal forest 23 76% 61–90% 

C14–Silver fir, big huckleberry and beargrass forest 45 76% 66–86% 

C04–Moist western hemlock, Douglas-fir and foamflower forest 24 76% 61–92% 

H53–Showy sedge and Sitka valerian meadow 21 82% 64–100% 

C21–Mountain hemlock, subalpine fir and heather woodland 9 86% 66–100% 

S45–Vine maple shrubland 16 83% 69–97% 
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Table 16 (continued). Map class-specific producer’s accuracy (PA) for each assessed map class, with 
poorly mapped classes first. Figures are taken from population contingency table. Asterisks indicate true 
values that are at least 90% confident to lie either fully above or below the 80% accuracy target. 

Class code and full name 
# of plots 

identified as 
PA 

estimate 
PA 90% conf 

interval 

S47–Successional huckleberry shrubland 24 84% 69–100% 

C11–Mesic silver fir and western hemlock forest 44 86% 77–94% 

C13–Mountain hemlock, silver fir and Cascade azalea forest 39 86% 77–94% 

C20–Subalpine fir and Sitka valerian forest and woodland 47 86% 76–96% 

H50W–Lowland marsh and meadow 2 100% 75–100% 

H60W–Black alpine sedge wetland 2 100% 75–100% 

B30–Successional gravel bar shrubland 9 87%* 82–93% 

S48–Subalpine heather shrubland 19 89% 79–98% 

C05–Western hemlock, Douglas-fir and sword fern forest 29 90% 77–100% 

C26–Conifer krummholz and treed cliff 21 92% 77–100% 

C03–Sitka spruce, western hemlock and wood-sorrel forest 4 100%* 88–100% 

R73–Bedrock barren 35 96%* 89–100% 

R72–Colluvial barren 57 95%* 90–99% 

H58–Bedrock balds and sparsely vegetated forest openings 9 100%* 94–100% 

H51W–Subalpine herbaceous wetland 11 100%* 95–100% 

H62–Alpine sparse herbaceous vegetation 14 100%* 96–100% 

H63–Alpine buckwheat pumice vegetation 14 100%* 96–100% 

S43–Sitka alder shrubland 18 100%* 97–100% 

H56–Subalpine summer-dry grass-forb meadow 15 100%* 97–100% 

C23–Mount Rainier subalpine fir and whitebark pine woodland 15 100%* 97–100% 

B31–Broadleaf riparian and swamp forest 15 100%* 97–100% 

H64–Alpine lupine pumice vegetation 16 100%* 97–100% 

S49–Alpine heather shrubland 23 100%* 98–100% 

R71–Alluvial barren and debris-covered ice 34 100%* 99–100% 

 

Classes with accuracies less than the 80% target should be considered as candidates for merging with 
other classes (Lea and Curtis 2010). To assist with this task, Table 17 lists these classes as well as 
the classes with which each is confused. 
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Table 17. Significantly confused map classes and the classes with which they are confused. For classes 
with user’s or producer’s accuracy less than 80%, all classes with which confusion exists are given with 
the proportion of the reached inference area (RIA) affected by confusion in either direction between the 
pair. 

Class code and abbreviated name 
Minimum 
(UA, PA) Confused with (proportion of RIA affected) 

S40W–Low elevation shrub wetland 0% B30–Successional gravel bar (0.21%) 

C12–Silver fir & Alaska blueberry 61% 

C13–Mtn hemlock & Cascade azalea (1.57%) 
C11–Mesic silver fir & w hemlock (1.00%) 
C10–Moist silver fir & foamflower (0.92%) 
C14–Silver fir & big huckleberry (0.91%) 
C20–Subalp fir & Sitka valerian (0.37%) 

C11–Mesic silver fir & w hemlock 63% 

C10–Moist silver fir & foamflower (2.00%) 
C14–Silver fir & big huckleberry (1.16%) 
C04–Moist w hemlock & foamflower (1.16%) 
C12–Silver fir & Alaska blueberry (1.00%) 
C06–W hemlock & salal (0.97%) 
C05–W hemlock & sword fern (0.24%) 

H57–Green fescue dry meadow 64% 

H53–Showy sedge & Sitka valerian (0.17%) 
S48–Subalpine heather (0.14%) 
H56–Subalpine summer-dry grass-forb (0.13%) 
S47–Successional huckleberry (0.07%) 
S49–Alpine heather (0.06%) 

S41W–Subalpine willow wetland 66% 
S47–Successional huckleberry (0.09%) 
H53–Showy sedge & Sitka valerian (0.08%) 

C10–Moist silver fir & foamflower 71% 

C11–Mesic silver fir & w hemlock (2.00%) 
C12–Silver fir & Alaska blueberry (0.92%) 
C06–W hemlock & salal (0.23%) 
C04–Moist w hemlock & foamflower (0.19%) 
C05–W hemlock & sword fern (0.15%) 
C14–Silver fir & big huckleberry (0.15%) 

C21–Mtn hemlock & heather 75% 
C20–Subalp fir & Sitka valerian (1.25%) 
C26–Conifer krummholz & treed cliff (0.03%) 

C06–W hemlock & salal 76% 

C11–Mesic silver fir & w hemlock (0.97%) 
C05–W hemlock & sword fern (0.54%) 
C10–Moist silver fir & foamflower (0.23%) 
C14–Silver fir & big huckleberry (0.23%) 

C14–Silver fir & big huckleberry 76% 

C11–Mesic silver fir & w hemlock (1.16%) 
C12–Silver fir & Alaska blueberry (0.91%) 
C13–Mtn hemlock & Cascade azalea (0.45%) 
C06–W hemlock & salal (0.23%) 
C10–Moist silver fir & foamflower (0.15%) 
S45–Vine maple (0.12%) 
S43–Sitka alder (0.08%) 
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Table 17 (continued). Significantly confused map classes and the classes with which they are confused. 
For classes with user’s or producer’s accuracy less than 80%, all classes with which confusion exists are 
given with the proportion of the reached inference area (RIA) affected by confusion in either direction 
between the pair. 

Class code and abbreviated name 
Minimum 
(UA, PA) Confused with (proportion of RIA affected) 

C04–Moist w hemlock & foamflower 76% 
C11–Mesic silver fir & w hemlock (1.16%) 
C10–Moist silver fir & foamflower (0.19%) 
C05–W hemlock & sword fern (0.15%) 

S49–Alpine heather 79% 

S48–Subalpine heather (0.18%) 
H53–Showy sedge & Sitka valerian (0.06%) 
C26–Conifer krummholz & treed cliff (0.06%) 
H57–Green fescue dry meadow (0.06%) 

 

Sample and population contingency tables were also constructed at the lifeform/land-use level by 
lumping each map class into a category based on its dominant vegetation; the results are in INR 
(2021a) and are summarized below in Table 18. All AA plots that successfully passed through the 
QC process were used, including those of the seven map classes excluded from the map class level 
analysis (these fell into the last five categories in the table). The user’s and producer’s accuracy 
estimates for all evaluated categories exceeded the 80% standard at 90% confidence. 

Table 18. Accuracy of map aggregated to lifeform/land-use level. Figures taken from population 
contingency table. Asterisks indicate true values that are at least 90% confident to lie either fully above or 
below the 80% accuracy target. 

Lifeform 
# of plots 

mapped as UA estimate 
UA 90% conf 

interval 
# of plots 

identified as 
PA 

estimate 
PA 90% conf 

interval 

Broadleaf tree 23 100%* 98–100% 24 97%* 90–100% 

Conifer 383 100%* 100–100% 386 100%* 99–100% 

Tall shrub 35 94%* 86–100% 34 98%* 93–100% 

Shrubland 73 93%* 88–99% 73 95%* 92–99% 

Herbaceous 121 95%* 91–99% 118 96%* 92–100% 

Water 44 100%* 99–100% 44 100%* 99–100% 

Rock 126 100%* 100–100% 126 100%* 100–100% 

Snow & ice 19 100%* 97–100% 19 100%* 97–100% 

Developed 2 100% 75–100% 2 100% 75–100% 

Other disturbed 0 NA NA 0 NA NA 
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3.7. Discussion 
The accuracy assessment phase field observations are the reference by which the map’s accuracy is 
measured, but these observations are not infallible. Key decisions in the field regarding the extent of 
the vegetation types perceived, the locations of boundaries between them, and the cover occupied by 
the species present within each may vary between observers. The vegetation classification itself 
(Nielsen et al. 2021c, Nielsen and Brunner 2021) is a somewhat subjective entity, with few hard rules 
for discriminating classes other than the weight of statistical evidence from ocular data, which are 
incomplete for many AA plots. Observers may also disagree about the degree to which a text-based 
map class description matches a vegetation patch in the field. To borrow a term from taxonomy, the 
circumscriptions of the map classes and mapping associations may not be consistently understood 
and applied. In some cases, the accuracy assessment plot QC process will have compensated for 
these inconsistencies; in other cases, not. 

The failure to meet inference area goals for most classes and the geographic bias toward areas of the 
park which we were able to reach limit the confidence we can attach to many of our conclusions. In 
these cases, Lea and Curtis (2010) warn that “extending the results of the thematic accuracy 
assessment from the inference area to the rest of the project must be justified by assumptions, rather 
than by statistical inference.” In the following discussion, we have supplemented the AA analysis 
with photo-interpretation and consideration of context, in an attempt to provide additional evidence 
and to make these assumptions as transparent as possible.  

3.7.1. Undersampled map classes 
Based on their mapped area, all classes except H50W–LOWLAND MARSH AND MEADOW require 30 
samples of mapped occurrences. As documented in Table 14, this was only achieved for ten of the 
35 classes. Several causes for this failure are described below. 

Sixteen of the 25 undersampled classes were rare (totaling 100 or fewer mapped hectares) in the 
reached inference area. These classes were typically concentrated in one or two parts of the RIA and 
even if the sampling goals had been achieved, autocorrelation amongst these plots in both floristics 
and mapping tendencies would have likely made their application to the full project area 
questionable. Access difficulties to the north and west sides of the park resulting from the long-
lasting snowpack likely contributed to many of these shortfalls. Five other classes (C21–MOUNTAIN 

HEMLOCK, SUBALPINE FIR AND HEATHER WOODLAND, C23–MOUNT RAINIER SUBALPINE FIR AND 

WHITEBARK PINE WOODLAND, S48–SUBALPINE HEATHER SHRUBLAND, S49–ALPINE HEATHER 

SHRUBLAND and H53–SHOWY SEDGE AND SITKA VALERIAN MEADOW) are located at subalpine and 
alpine elevations. It is likely that the snowpack inhibited the ability of the crews to reach and assess 
plots of these classes. The remaining four undersampled classes all were sampled at 20 or more 
mapped occurrences. 

It is likely that some of the undersampling problems resulted from changes in the mapped classes 
made between the time of AA sampling in 2011 and production of the final maps in 2019–20. For 
example, during the intervening time period, we addressed substantial confusion between H51W–
SUBALPINE HERBACEOUS WETLAND and H53–SHOWY SEDGE AND SITKA VALERIAN MEADOW by 
carving a new map class, S41W–SUBALPINE WILLOW WETLAND, out of plots with substantial Salix 
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commutata presence that had floristics and mapping tendencies intermediate to the two original 
classes. 

Many other changes were made to address challenges of mapping and field identification. While the 
goals of these updates were achieved, they had the by-product of reducing the number of AA plots 
available for assessing the final classes. An ideally executed project would have deferred AA 
fieldwork until completion of the final map—or at least map classification—but project management 
concerns took precedence here. For many map classes, the sample sizes are too small to confidently 
assess whether the 80% accuracy standard was achieved, as reflected in the wide confidence intervals 
seen in Table 15 and Table 16. The small sample sizes should be kept in mind when considering the 
mapping error rates discussed below. 

3.7.2. Map classes failing to meet accuracy standards 
A list of the map classes failing to meet accuracy standards, the classes they are most confused with, 
and a possible corrective action that could be taken (if any) are shown in Table 19. Since every area 
of the map must be labeled, the only corrective action we consider is that of merging confused 
classes. This is likely to result in overall improvements only if the classes to be merged are confused 
primarily with each other. Otherwise, any poorly mapping area will simply get attributed into a 
different bin, perhaps bringing a different class below the accuracy target. We first review the 
apparent mapping errors for which merging classes does not appear to be an option. 

Table 19. Map classes failing to meet accuracy standards or confused with those classes. ‘+’ indicates 
accuracy estimates of 80% or higher; asterisks indicate accuracy less than 80% at 90% confidence. The 
classes accounting for the most mismapped area are listed under “confusion with,” along with the fraction 
contributed to the total mismapped area in parentheses. A possible corrective action is noted for each. 

Class code and abbreviated name UA % PA % Confusion with Corrective action 

C04–Moist w hemlock & foamflower + 76 C11 (77%) none, no reciprocity 

C05–W hemlock & sword fern + + C06 (50%), C11 (22%) – 

C06–W hemlock & salal + 76 C11 (49%), C05 (27%) none, no reciprocity 

C10–Moist silver fir & foamflower + 71 C11 (55%), C12 (25%) consider merge with C11 

C11–Mesic silver fir & w hemlock 63* + C10 (31%), C14 (18%), 
C04 (18%) consider merge with C10 

C12–Silver fir & Alaska blueberry 61* 62* 
C13 (33%), C11 (21%), 
C10 (19%), C14 (19%) 

consider merge with C13 

C13–Mtn hemlock & Cascade azalea + + C12 (64%) consider merge with C12 

C14–Silver fir & big huckleberry + 76 C11 (37%), C12 (29%) none, no reciprocity 

C20–Subalp fir & Sitka valerian + + C21 (57%), C13 (20%), 
C12 (17%) consider merge with C21 

C21–Mtn hemlock & heather 75 + C20 (97%) consider merge with C20 

B30–Successional gravel bar + + S40W (100%) consider merge with S40W 

S40W–Low elevation shrub wetland 0 NA B30 (100%) consider merge with B30 

S41W–Subalpine willow wetland + 66 S47 (51%), H53 (49%) none, no reciprocity 
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Table 19 (continued). Map classes failing to meet accuracy standards or confused with those classes. ‘+’ 
indicates accuracy estimates of 80% or higher; asterisks indicate accuracy less than 80% at 90% 
confidence. The classes accounting for the most mismapped area are listed under “confusion with,” along 
with the fraction contributed to the total mismapped area in parentheses. A possible corrective action is 
noted for each. 

Class code and abbreviated name UA % PA % Confusion with Corrective action 

S47–Successional huckleberry + + S48 (43%), S41W (20%), 
H53 (19%), H57 (17%) 

– 

S48–Subalpine heather + + S49 (26%), S47 (26%), 
H53 (26%), H57 (21%) consider merge with S49 

S49–Alpine heather 79 + S48 (50%) consider merge with S48 

H53–Showy sedge & Sitka valerian + + S48 (28%), H57 (25%) – 

H57–Green fescue dry meadow 75 64 H53 (29%), S48 (25%), 
H56 (23%) none, no reciprocity 

 

Map classes for which merging is not a viable option 
No remedy is possible for the following apparent mapping errors, due to non-reciprocity of errors 
within the confused classes. The classes are considered in order of decreasing severity. Asterisks 
indicate estimates that are 90% confident to lie either above or below the 80% accuracy target; all 
other estimates given are not statistically significant with respect to the target. Recommendations to 
NPS are given in boldface. 

H57–GREEN FESCUE DRY MEADOW (UA 75%, PA 64%) may be slightly under-mapped in the 
northeast where it is most abundant and may be somewhat over-mapped in the Paradise vicinity. The 
class is generally distributed where Festuca viridula is abundant, and intergrades substantially with 
S47–SUCCESSIONAL HUCKLEBERRY SHRUBLAND, H53–SHOWY SEDGE AND SITKA VALERIAN MEADOW 
and H56–SUBALPINE SUMMER-DRY GRASS-FORB MEADOW where the fescue combines with the 
dominants of the other classes. Map training data was weak, as reliable identification depends on 
complete floristic information, and frequent fine-scale patchiness creates additional assessment 
challenges. Two plots of H57 mapped as H56 along the western portion of the Sunrise road where 
the two classes intergrade. Two plots of H57 mapped as H53 at the eastern park boundary, near 
Crystal and Tipsoo Lakes; both had floristics intermediate between the two classes. One plot of 
obvious S48–SUBALPINE HEATHER SHRUBLAND at Paradise mapped as H57, but this error does not 
appear to be widespread. Several nearby training plots were labeled as H57, but it is possible that the 
class is less abundant there than the data imply. Plots collected in 2008 often confused several aster 
family species, which could have affected the best map class assessment in this area. Though we 
corrected these errors in QC when we were confident they had occurred, we often had no way of 
being sure. Within the constraints of the floristic and spatial ambiguities detailed above, the class 
appears to be reasonably well-mapped, although we recommend NPS assess the map in the 
Paradise area using complete floristics plots and the indicators given in Nielsen et al. (2021c). 

S41W–SUBALPINE WILLOW WETLAND (UA 100%*, PA 66%) may be under-mapped in upland seep 
settings. One large such occurrence of Salix commutata or S. barclayi at Paradise was mapped as 
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S47–SUCCESSIONAL HUCKLEBERRY SHRUBLAND. Although significant S41W is mapped nearby, it 
appears to all be in lower-lying areas. Merging the two classes is not a good option as that would 
sacrifice the wetland S41W occurrences—the majority of the map class—which appear to be well-
mapped. It is likely this is an uncommon error as no similarly upland training plots were found at 
MORA, although they do exist at the other NCCN parks. We recommend that NPS correct these 
mapping errors where they are encountered. 

C04–MOIST WESTERN HEMLOCK, DOUGLAS-FIR AND FOAMFLOWER FOREST (UA 90%, PA 76%) is 
mapped as C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST at four plots across the south side 
of the park, but none appear to represent significant problems. All plots seem to be in microsites 
below MMU that are considerably wetter than the surroundings. Furthermore, all have significant 
presence of Abies amabilis, though not enough to establish that C11 (or C10–MOIST SILVER FIR, 
WESTERN HEMLOCK AND FOAMFLOWER FOREST) would be an appropriate call. Two are adjacent to the 
Stevens Canyon road on the slopes of Backbone Ridge and may have been impacted by road 
construction. Furthermore, C04 is mapped within 50 meters of three of the plots. Based on the 
evidence here, we believe this class is well-mapped. Fine-scale intergrading of soil moisture 
conditions will always result in class ambiguities; we recommend that NPS regard mosaics of 
small mapped forest patches as indicating the proportions in which several vegetation types may be 
represented locally, rather than always seeking a fine-scale spatial correspondence. 

C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL FOREST (UA 85%, PA 76%) is mapped as C11–
MESIC SILVER FIR AND WESTERN HEMLOCK FOREST at four plots, but none appear to represent 
significant problems. Three of the sites are along a 2-kilometer stretch of the Stevens Canyon road on 
the west side of Backbone Ridge; the other is on a steep south-facing slope above the junction of the 
North and South Mowich Rivers. The Backbone Ridge sites are floristically intermediate—all 
contain significant amounts of Abies amabilis or A. procera—and all fell within 20 meters of mapped 
C06, which is the dominant class mapped on this slope. A GPS malfunction occurred during 
collection of the Mowich River site; again, C06 is mapped nearby, just 60 horizontal meters up from 
the nominal plot location on this steep featureless slope. Based on the evidence here, we believe this 
class is well-mapped. 

C14–SILVER FIR, BIG HUCKLEBERRY AND BEARGRASS FOREST (UA 89%, PA 76%) is mapped as C11–
MESIC SILVER FIR AND WESTERN HEMLOCK FOREST at three plots and as C12–SILVER FIR, HEMLOCK 

AND ALASKA BLUEBERRY FOREST at four plots. The errors do not appear to represent significant 
problems. The confusion with C11 occurred at two plots just 60 meters apart near Fryingpan Creek 
(one floristically intermediate to C11, both within 40 meters of mapped C14) and at one plot near 
Pyramid Creek that was floristically clear but located on the boundary of mapped C14). The 
confusion with C12 occurred at three plots all within 200 meters on the Cowlitz Divide trail (all 
floristically intermediate to C12, all within 40 meters of mapped C14), and at another intermediate 
plot on the Moraine Creek trail, also with C14 mapped in the vicinity. Although sites floristically 
intermediate between these classes are not uncommon, there is no evidence here that the classes 
are poorly mapped. 
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Map classes for which merging may be a viable option 
There are five pairs of map classes that could conceivably be aggregated for improved accuracy, 
based on this analysis. They are considered below in order of decreasing severity of the apparent 
mapping issue they would address. Asterisks indicate estimates that are 90% confident to lie either 
above or below the 80% accuracy target; all other estimates given are not statistically significant with 
respect to the target. Recommendations to NPS are given in boldface. 

S40W–LOW ELEVATION SHRUB-DOMINATED WETLAND (UA 0%, PA NA) and B30–SUCCESSIONAL 

GRAVEL BAR SHRUBLAND (UA 100%*, PA 87%*) could be merged; the combined class B30+S40W 
would have UA 100%* and PA 100%*. The only mapped area of S40W that was visited during AA 
was found to be B30 in an overflow channel of the Ohanapecosh River, although other nearby areas 
appear in NAIP imagery to be correctly mapped as S40W. Examination of the map does give the 
impression that the UA of S40W may be quite low (e.g., it appears to map over73 small openings in 
riparian forests that are probably best considered forest) but that most of the excess is mapped near 
major rivers and could be easily corrected, perhaps after some field inspection. It also appears 
evident that merging S40W with B30 would accomplish nothing positive and that the mapped 
distribution of S40W can provide some useful information about locations of possibly unknown 
shrub-dominated wetlands that might be useful. Given the significant ecological distinction between 
these classes and the relative ease by which excess mapped S40W might be hand-corrected, we 
recommend keeping the classes as they are. 

C12–SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST (UA 61%*, PA 62%*) and C13–
MOUNTAIN HEMLOCK, SILVER FIR AND CASCADE AZALEA FOREST (UA 86%, PA 86%) could be 
merged; the combined class C12+C13 would have UA 85% and PA 78%. The AA found two-way 
confusion74 between these classes, although C12 has confusion with several other forested classes as 
well. Five plots where C13 was found in the field were mapped as C12; all were in the elevational 
transition zone between the classes, with C13 was mapped nearby. Four of the five were in cold-air 
drainage basins. The three plots mapped as C13 where C12 was found were generally higher on 
slopes. Two had intermediate floristics, and all were within a short distance of mapped C12 just 
above the elevation-based transition. There is some evidence here that microclimatic conditions may 
cause occasional mapping errors, and certainly that floristic ambiguity can be an issue, but the errors 
do not appear to affect areas distant from the transition zone. C12 is one of the most poorly mapped 
classes in each of the NCCN maps, occupying a variably moist niche between the lower and upper 
montane zones where it may be confused with several other classes. However, the pattern of 
confusion varies from park to park. At NOCA, C12 and C13 are somewhat confused with each other, 
but each is primarily confused with other classes. At OLYM, they were not confused with each other 
at all. In the interest of maintaining a consistent NCCN classification, we recommend keeping the 
classes separate at MORA. Because unmappable micro-climatic conditions may often determine 

 
73 In this terminology, “X maps over Y” means that class X was repeatedly mapped in locations where class Y was 
discovered on the ground. “Y is mapped over by X” would be an equivalent formulation. 
74 i.e., each of the types occasionally maps over the other. 
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the fine-scale distribution of these classes, we recommend that NPS regard mosaics of small 
mapped forest patches as indicating the proportions in which several vegetation types may be 
represented locally, rather than always seeking a fine-scale spatial correspondence. 

C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST (UA 63%*, PA 86%) and C10–MOIST SILVER 

FIR, WESTERN HEMLOCK AND FOAMFLOWER FOREST (UA 84%, PA 71%) could be merged; the 
combined class C10+C11 would have UA 81% and PA 76%. The most significant issue here is that 
seven plots identified as C10 in the field mapped as C11. Three plots occurred in similar settings 
lower east-facing slopes above the Ohanapecosh River or its extension upstream as Chinook Creek. 
Floristics were intermediate on one plot, and all three were just a short distance—between eight and 
30 meters—upslope from mapped C10 closer to the channel. At three other plots where this error 
occurred (near Martha Falls in Stevens Canyon, above the Paradise River near its junction with the 
Nisqually, and above Cataract Creek), microhabitats related to upland seeps seem likely to be 
responsible for the mapping mistakes. For all but one of the seven plots, C10 was mapped within 30 
meters, and at four of them it was mapped within ten meters. In all, the AA plots provide some 
evidence that C10 may extend slightly higher above valley bottoms on some aspects than it is 
mapped, but in most cases the errors again seem to reflect microhabitat issues and in any case they do 
not appear to affect areas distant from the transition zone. C11 is also a class that has mapping issues 
at the other NCCN parks, but again it was confused with different classes at each park. Again, in the 
interest of maintaining a consistent NCCN classification, we recommend keeping the classes 
separate at MORA. Because unmappable microhabitats may often determine the fine-scale 
distribution of these classes, we recommend that NPS regard mosaics of small mapped forest 
patches as indicating the proportions in which several vegetation types may be represented locally, 
rather than always seeking a fine-scale spatial correspondence. 

C21–MOUNTAIN HEMLOCK, SUBALPINE FIR AND HEATHER WOODLAND (UA 75%, PA 86%) and C20–
SUBALPINE FIR AND SITKA VALERIAN FOREST AND WOODLAND (UA 91%*, PA 86%) could be merged; 
the combined class C20+C21 would have UA 96%* and PA 94%*. Two-way confusion affected 
these classes; two plots were confused in each direction. This represents a more significant issue for 
the mapping of C21 as only eight mapped plots of that class were visited. The C21 plots that mapped 
as C20 both had intermediate floristics; one, by Hidden Lake in the Palisades, was adjacent to a 
training plot that had been called to C20 because of a variety of understory indicators that were found 
there and may have been missed in the AA plot. The other plot may represent a more significant 
error, as it was above Three Lakes on the eastern park boundary where little C21 is mapped. High 
elevations east of highway 123 in the southeastern quadrant of the park were very poorly sampled 
during training collection, and floristics appear to be ambiguous in this region, as mountain-heather 
communities often seem to include Rhododendron albiflorum and Vaccinium membranaceum as 
well. It is possible that C21 is substantially under-mapped here, but one ambiguous AA plot does not 
provide enough evidence. We recommend the classes be kept separate, but that NPS investigate the 
mapping of subalpine forests in this part of the park more thoroughly; a sampling trip along the 
Pacific Crest Trail between Chinook Pass and Three Lakes would be very useful. 
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S49–ALPINE HEATHER SHRUBLAND (UA 79%, PA 100%*) and S48–SUBALPINE HEATHER SHRUBLAND 
(UA 88%, PA 89%) could be merged; the combined class S48+S49 would have UA 89%* and PA 
95%*. Three plots identified as S48 in the field were mapped as S49. One plot was in Spray Park, 15 
meters from mapped S48. This plot may have been mislocated as it appears quite sparse in NAIP 
imagery but had abundant Lupinus latifolius documented in the field. The other two plots were at 
Paradise. One had intermediate and atypical floristics and was located on the boundary of mapped 
S48. The other was a good bit higher, above the elevation at which the map shows significant 
amounts of S48, and perhaps taking advantage of a topographically sheltered location. S48 and S49 
were kept separate at the other NCCN parks and there does not appear to be convincing evidence 
to merge them at MORA. It is possible that small amounts of S48 occur in sheltered microclimates 
at higher elevations than the map shows. 

3.7.3. Other known mapping issues 
As mentioned above, C12–SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST experiences 
significant confusion with several classes. In addition to the upper montane classes discussed above 
(C13–MOUNTAIN HEMLOCK, SILVER FIR AND CASCADE AZALEA FOREST and C14–SILVER FIR, BIG 

HUCKLEBERRY AND BEARGRASS FOREST), it may also be confused with the lower montane classes 
C10–MOIST SILVER FIR, WESTERN HEMLOCK AND FOAMFLOWER FOREST and C11–MESIC SILVER FIR 

AND WESTERN HEMLOCK FOREST. Complete floristics and careful diagnosis of indicator species is 
essential for correct identification of this class.  
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4. Vegetation of Mount Rainier National Park 
4.1. Vegetation map 
The vegetation map (Figure 20, and a higher-resolution version at Nielsen et al. 2021d) illustrates 
the distribution of the 42 map classes across the park and surrounding buffer. The map contains over 
210 million pixels aggregated into patches of no less than nine 3-meter pixels (81 m2). The estimated 
area of each class, based on its mapped area modified by the correction factor from the AA 
population contingency table, is shown in Table 20. The map classes vary widely in abundance, with 
most of them limited in extent. The most common six classes—five of which are montane and 
subalpine conifer types—collectively occupy half of the park, while 18 classes cover less than 1% 
each. M93–TIMBERLAND WITH UNCERTAIN VEGETATION is absent in the park, though it is present 
immediately adjacent in several areas; it is not shown in the table. 
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Figure 20. Vegetation map of Mount Rainier National Park. 
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Table 20. Map class estimated area and proportion of park, listed by area. 

Class code and full name 
Est area in 

park (ha) 
Est area in 

park (ac) 
Proportion of 

park (%) 

C14–Silver fir, big huckleberry and beargrass forest 10,103 24,965 10.57 

C13–Mountain hemlock, silver fir and Cascade azalea forest 9,672 23,901 10.12 

C20–Subalpine fir and Sitka valerian forest and woodland 8,022 19,824 8.39 

W82–Exposed snow and ice 7,368 18,206 7.71 

C11–Mesic silver fir and western hemlock forest 6,276 15,508 6.57 

C12–Silver fir, hemlock and Alaska blueberry forest 6,225 15,383 6.51 

R72–Colluvial barren 5,819 14,378 6.09 

C10–Moist silver fir, western hemlock and foamflower forest 5,286 13,062 5.53 

R73–Bedrock barren 4,076 10,071 4.26 

C05–Western hemlock, Douglas-fir and sword fern forest 2,955 7,302 3.09 

C06–Western hemlock, Douglas-fir and salal forest 2,783 6,877 2.91 

C21–Mountain hemlock, subalpine fir and heather woodland 2,760 6,820 2.89 

R71–Alluvial barren and debris-covered ice 2,409 5,953 2.52 

C04–Moist western hemlock, Douglas-fir and foamflower forest 2,204 5,446 2.31 

S48–Subalpine heather shrubland 2,103 5,198 2.20 

S47–Successional huckleberry shrubland 2,052 5,070 2.15 

S43–Sitka alder shrubland 1,631 4,031 1.71 

C23–Mount Rainier subalpine fir and whitebark pine woodland 1,567 3,871 1.64 

H62–Alpine sparse herbaceous vegetation 1,407 3,476 1.47 

S45–Vine maple shrubland 1,359 3,357 1.42 

S49–Alpine heather shrubland 1,206 2,979 1.26 

H53–Showy sedge and Sitka valerian meadow 1,178 2,910 1.23 

W81–Fresh water 960 2,373 1.00 

H57–Green fescue dry meadow 912 2,254 0.95 

C26–Conifer krummholz and treed cliff 803 1,985 0.84 

B31–Broadleaf riparian and swamp forest 799 1,975 0.84 

B30–Successional gravel bar shrubland 771 1,906 0.81 

M95–Roads in park 532 1,315 0.56 

H58–Bedrock balds and sparsely vegetated forest openings 488 1,206 0.51 

H51W–Subalpine herbaceous wetland 460 1,137 0.48 

H56–Subalpine summer-dry grass-forb meadow 273 674 0.29 

H63–Alpine buckwheat pumice vegetation 255 630 0.27 

S41W–Subalpine willow wetland 188 464 0.20 

H64–Alpine lupine pumice vegetation 146 361 0.15 

H60W–Black alpine sedge wetland 146 360 0.15 

C03–Sitka spruce, western hemlock and wood-sorrel forest 140 346 0.15 
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Table 20 (continued). Map class estimated area and proportion of park, listed by area. 

Class code and full name 
Est area in 

park (ha) 
Est area in 

park (ac) 
Proportion of 

park (%) 

M92–Burned with uncertain vegetation 127 314 0.13 

S40W–Low elevation shrub-dominated wetland 67 165 0.07 

C15–Lodgepole pine and Douglas-fir woodland 37 91 0.04 

H50W–Lowland marsh and meadow 17 43 0.02 

M94–Development 12 29 0.01 

 

4.2. Vegetation overview 
The map classes can be broadly broken into ten groups based on their dominant lifeform and land-
use characteristics: (a) conifer-dominated, (b) broadleaf tree-dominated, (c) tall shrublands, (d) 
shrublands and dwarf-shrublands, (e) herbaceous vegetation, (f) rock barrens, (g) exposed snow and 
ice, (h) water, (i) natural and semi-natural disturbed landscapes (including burned and logged areas), 
and (j) development. A map made by merging map classes into these groups is shown in Figure 21, 
and the relative abundance of map classes within each group is illustrated by Figure 22. 



 

103 

 
Figure 21. Lifeform map of Mount Rainier National Park. 
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Figure 22. Relative abundance of map classes, grouped by lifeform/land-use category. 
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Analysis of the distribution patterns of plant species provides a more fundamental (but also more 
detailed and complex) way of understanding vegetation patterns in the park. Table 21 lists the most 
common species documented in the training plots, as well as other species that are key components 
of the mapped vegetation classes. Complete floristics tables are provided in INR (2021b). 

Table 21. Common species in plots and other important species discussed in the text. Frequency in full-
ocular training plots is given and ranked relative to all other species. Elevation zones (L=lowland, 
LM=lower montane, UM=upper montane, S=subalpine, A=alpine) with which species are most associated 
are marked with an ‘X.’ Bullets ‘•’ indicate zones of less common but still notable occurrence. Zones 
where the species is not appreciably present are indicated by ‘–.’ Scientific names follow Hitchcock and 
Cronquist (2018); species are listed alphabetically. INR (2021b) has a complete list. 

Scientific name Common name Frequency Rank L LM UM S A 

Abies amabilis silver fir 47.8% 1 • X X • – 

Abies grandis grand fir 2.1% 149 X – – – – 

Abies lasiocarpa subalpine fir 31.9% 4 – • X X X 

Abies procera noble fir 7.4% 68 – • X – – 

Acer circinatum vine maple 17.5% 23 X • – – – 

Achlys triphylla vanillaleaf 24.0% 10 X X • – – 

Aconogonon davisiae Davis’ knotweed 2.9% 122 – – – – X 

Alnus viridis Sitka alder 5.8% 80 • X X – – 

Antennaria lanata woolly pussytoes 8.4% 61 – – – X X 

Arnica latifolia broad-leaved arnica 10.6% 49 – – X X – 

Athyrium filix-femina lady fern 15.0% 32 X X – – – 

Berberis nervosa dwarf Oregon-grape 17.7% 22 X • – – – 

Bistorta bistortoides American bistort 13.9% 36 – – – X X 

Callitropsis nootkatensis Alaska-cedar 23.1% 12 – • X X • 

Carex kelloggii lakeshore sedge 1.1% 207 – – – X – 

Carex nigricans black alpine sedge 3.0% 120 – – – • X 

Carex spectabilis showy sedge 13.1% 41 – – – X X 

Cassiope mertensiana white mountain-heather 9.1% 56 – – – • X 

Castilleja parviflora mountain Indian paintbrush 8.8% 58 – – – X X 

Chimaphila menziesii little pipsissewa 14.2% 35 X X • – – 

Chimaphila umbellata pipsissewa 13.3% 40 X X X – – 

Clintonia uniflora queen’s cup 19.2% 20 • X X – – 

Cornus unalaschkensis bunchberry 15.1% 30 • X – – – 

Erigeron glacialis wandering daisy 8.9% 57 – – – X • 

Eriogonum pyrolifolium dirty socks 1.6% 171 – – – • X 

Erythronium montanum avalanche lily 12.1% 45 – – X X – 

Eucephalus ledophyllus Cascade aster 9.7% 51 – – • X – 

Festuca viridula green fescue 13.8% 37 – – • X – 
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Table 21 (continued). Common species in plots and other important species discussed in the text. 
Frequency in full-ocular training plots is given and ranked relative to all other species. Elevation zones 
(L=lowland, LM=lower montane, UM=upper montane, S=subalpine, A=alpine) with which species are 
most associated are marked with an ‘X.’ Bullets ‘•’ indicate zones of less common but still notable 
occurrence. Zones where the species is not appreciably present are indicated by ‘–.’ Scientific names 
follow Hitchcock and Cronquist (2018); species are listed alphabetically. INR (2021b) has a complete list. 

Scientific name Common name Frequency Rank L LM UM S A 

Galium triflorum fragrant bedstraw 7.4% 69 X X • – – 

Gaultheria shallon salal 10.2% 50 X • – – – 

Goodyera oblongifolia rattlesnake-plantain 19.8% 19 X X X – – 

Gymnocarpium dryopteris western oak fern 13.0% 42 X X • – – 

Hieracium albiflorum white hawkweed 9.2% 54 X • X X – 

Hylocomium splendens splendid feather moss 8.4% 62 X X – – – 

Juncus parryi Parry’s rush 3.3% 114 – – – X X 

Ligusticum grayi Gray's lovage 12.7% 43 – – – X – 

Linnaea borealis twinflower 21.3% 17 X X • – – 

Luetkea pectinata partridgefoot 11.7% 47 – – • X X 

Lupinus latifolius subalpine lupine 31.7% 5 – – • X • 

Lupinus lepidus prairie lupine 3.4% 112 – – – – X 

Luzula hitchcockii smooth woodrush 9.7% 52 – – • X • 

Maianthemum stellatum star-flowered Solomon's plume 9.3% 53 X X • – – 

Micranthes tolmiei Tolmie's saxifrage 1.6% 172 – – – – X 

Neottia cordata heartleaf twayblade 8.3% 64 X X X – – 

Oplopanax horridus devil's club 14.8% 33 X X – – – 

Oreostemma alpigenum alpine aster 7.0% 73 – – – X X 

Orthilia secunda one-sided wintergreen 13.4% 39 • X X – – 

Paxistima myrsinites Oregon-box 8.4% 63 X X X X • 

Pectiantia breweri Brewer's miterwort 6.7% 77 – X X X – 

Pedicularis contorta coiled-beak lousewort 5.7% 82 – – – X X 

Phlox diffusa spreading phlox 8.5% 59 – – • X X 

Phyllodoce empetriformis pink mountain-heather 21.8% 16 – – • X X 

Picea sitchensis Sitka spruce 0.9% 228 X – – – – 

Pinus contorta lodgepole pine 1.1% 213 • X • – – 

Pinus monticola western white pine 3.7% 110 X X X – – 

Polystichum munitum sword fern 17.5% 24 X • – – – 

Potentilla flabellifolia fan-leaf cinquefoil 14.6% 34 – – – X • 

Pseudotsuga menziesii Douglas-fir 32.5% 3 X X • – – 

Rhododendron albiflorum Cascade azalea 9.2% 55 – – X • – 
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Table 21 (continued). Common species in plots and other important species discussed in the text. 
Frequency in full-ocular training plots is given and ranked relative to all other species. Elevation zones 
(L=lowland, LM=lower montane, UM=upper montane, S=subalpine, A=alpine) with which species are 
most associated are marked with an ‘X.’ Bullets ‘•’ indicate zones of less common but still notable 
occurrence. Zones where the species is not appreciably present are indicated by ‘–.’ Scientific names 
follow Hitchcock and Cronquist (2018); species are listed alphabetically. INR (2021b) has a complete list. 

Scientific name Common name Frequency Rank L LM UM S A 

Rhododendron menziesii false azalea 15.1% 31 • X X – – 

Rubus lasiococcus dwarf bramble 26.5% 8 – • X • – 

Rubus pedatus trailing raspberry 16.8% 26 – X X – – 

Rubus spectabilis salmonberry 15.6% 28 X X – – – 

Salix barclayi Barclay's willow 1.2% 202 – – – X • 

Sambucus racemosa red elderberry 8.3% 65 X X – – – 

Sorbus sitchensis Sitka mountain-ash 15.6% 29 – – X X – 

Streptopus lanceolatus rose twisted-stalk 11.4% 48 • X X – – 

Struthiopteris spicant deer fern 12.7% 44 X X • – – 

Taxus brevifolia Pacific yew 7.5% 67 X X – – – 

Thuja plicata western redcedar 22.1% 15 X X – – – 

Tiarella trifoliata foamflower 22.7% 13 X X X – – 

Trillium ovatum Pacific trillium 16.0% 27 X X – – – 

Tsuga heterophylla western hemlock 43.2% 2 X X • – – 

Tsuga mertensiana mountain hemlock 20.2% 18 – – X X • 

Vaccinium deliciosum Cascade blueberry 22.6% 14 – – • X X 

Vaccinium membranaceum big huckleberry 30.1% 6 • • X X – 

Vaccinium ovalifolium Alaska blueberry 24.2% 9 • X X – – 

Vaccinium parvifolium red huckleberry 27.7% 7 X X – – – 

Vaccinium scoparium grouse whortleberry 8.3% 66 – – X X – 

Valeriana sitchensis Sitka valerian 23.3% 11 – – X X – 

Veratrum viride corn lily 17.3% 25 – • X X – 

Viola glabella pioneer violet 12.1% 46 X X • X – 

Viola orbiculata roundleaf violet 13.7% 38 • • X X – 

Viola sempervirens evergreen violet 8.5% 60 X • • – – 

Xerophyllum tenax beargrass 18.5% 21 – – X • – 

 

The distribution patterns of the most important species and map classes within each of the 
lifeform/land-use categories are discussed below.75 For purposes of discussion, we treat natural 

 
75 The map class descriptions (Nielsen et al. 2021c) contain greater detail about the species composition, habitat and 
distribution associated with each map class. 
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abiotic areas (including rock barrens, snow and ice, and water) as a single unit, and we treat wetlands 
as a separate unit, despite lumping them by their dominant lifeform in the lifeform map. As above, 
area estimates are based on the mapped area modified by the correction factor from the AA 
population contingency table. Species occurrence frequencies are relative to the full-ocular training 
plot dataset. 

4.2.1. Conifers 
The dry summers and relatively warm winters of the Pacific Northwest favor the development of 
coniferous forest as the climax lifeform where local conditions permit. Conifer-dominated vegetation 
is the most abundant lifeform in the park, covering three-fifths of the landscape, accounting for one-
third of the map classes, and ranging from stately low elevation forests to snow-sculpted krummholz 
clinging to rocky ridges. Coniferous vegetation is concentrated in the montane zone: lowland forests 
occupy 9% of the park, lower montane forests occupy 12%, upper montane 27%, subalpine forests 
and woodlands 13%, and krummholz less than one percent. The seventeen species of conifers76 are 
supplanted by other vegetation only where disturbance, snowpack, saturated soils or lack of soil 
development prevent their establishment and persistence. 

Lowland forests 
The pioneer species Douglas-fir (Pseudotsuga menziesii) and the shade-tolerant western hemlock 
(Tsuga heterophylla) dominate lowland conifer forests. Douglas-fir, the third most encountered plant 
in the park, is present throughout the lowland and montane zones—often as ancient emergent trees 
scattered over a younger canopy—and is missing from only the wettest sites. Western hemlock, the 
second most common plant, is the major successional tree in lowland forests and extends up through 
the montane zone. These species, with lesser amounts of western redcedar (Thuja plicata), contribute 
most of the overstory to the map classes C05–WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN 

FOREST and C06–WESTERN HEMLOCK, DOUGLAS-FIR AND SALAL FOREST. In moister settings, western 
redcedar is often codominant with western hemlock in impressive old-growth stands of C04–MOIST 

WESTERN HEMLOCK, DOUGLAS-FIR AND FOAMFLOWER FOREST, such as at the Grove of the Patriarchs 
near the Ohanapecosh River. The lower Carbon River valley hosts an unusual inland population of 
Sitka spruce (Picea sitchensis). Though similar to C04, the forests in the range of the spruce are 
treated here as C03–SITKA SPRUCE, WESTERN HEMLOCK AND WOOD-SORREL FOREST. Other lowland 
conifer forest associates, none of which are normally more than prominent, include the small 
understory tree Pacific yew (Taxus brevifolia), grand fir (Abies grandis) and western white pine 
(Pinus monticola). Small amounts of silver fir (Abies amabilis) are often present in the understory. 

Red huckleberry (Vaccinium parvifolium) and dwarf Oregon-grape (Berberis nervosa) are prominent 
in the understory of most lowland conifer stands except in the moistest settings. Dense successional 
C05 forests often have very sparse understories, sometimes limited to scattered dwarf Oregon-grape, 
rattlesnake plantain (Goodyera oblongifolia) and little pipsissewa (Chimaphila menziesii). C06 

 
76 There are plausible reports of subalpine larch (Larix lyallii) growing with Sitka alder on morainal deposits at 
4800’ elevation just below the Emmons Glacier. This would represent the 18th conifer in the park, more than are 
documented at either OLYM or NOCA. 
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forests always contain salal (Gaultheria shallon) and usually twinflower (Linnaea borealis), while 
C04 forests have a distinctive lush understory of foamflower (Tiarella trifoliata), sword fern 
(Polystichum munitum), devil’s club (Oplopanax horridus), vanillaleaf (Achlys triphylla) and western 
oak fern (Gymnocarpium dryopteris). In addition to Sitka spruce, C03 is notable for another coastal 
affiliate, deer fern (Struthiopteris spicant). 

Montane forests 
The lower montane zone is characterized by codominance of silver fir (Abies amabilis) with western 
hemlock. Entry to this zone is marked by increased canopy prominence of silver fir, the primary 
successional species throughout all but the driest of mid-elevation forests. C10–MOIST SILVER FIR, 
WESTERN HEMLOCK AND FOAMFLOWER FOREST occurs on valley bottoms and moist toe slopes, while 
higher and drier slopes are occupied by C11–MESIC SILVER FIR AND WESTERN HEMLOCK FOREST. 
Alaska blueberry (Vaccinium ovalifolium) is a dominant understory species in many lower montane 
stands and is especially abundant in wet-mesic settings where it is usually joined by devil’s club, 
foamflower, trailing raspberry (Rubus pedatus) and queen’s cup (Clintonia uniflora). Mesic midslope 
stands may have well-developed understories with twinflower, Alaska blueberry and red huckleberry, 
but may consist of dense younger stands with sparse understories of pipsissewa (Chimaphila 
umbellata) and one-sided wintergreen (Orthilia secunda). Another lower montane forest type, very 
infrequent in the park, is C15–LODGEPOLE PINE AND DOUGLAS-FIR WOODLAND. It is found only on 
lahar deposits near Longmire and on glacial outwash adjacent to the White River. 

Upper montane forests are transitional to the subalpine zone above. Here, the high elevation species 
mountain hemlock (Tsuga mertensiana), subalpine fir (Abies lasiocarpa) and Alaska-cedar 
(Callitropsis nootkatensis) become prominent in closed forests usually dominated by silver fir. C12–
SILVER FIR, HEMLOCK AND ALASKA BLUEBERRY FOREST and C14–SILVER FIR, BIG HUCKLEBERRY AND 

BEARGRASS FOREST are transitional from the lower montane, with high elevation tree species usually 
subordinate to silver fir, western hemlock and/or Douglas-fir. C12 is a moist forest with Alaska-cedar 
and both hemlock species in the overstory and a lush understory characterized by Alaska blueberry 
and trailing raspberry. C14 is drier and often associated with past fire. It is the most abundant in the 
park, occupying a mid-montane elevation band especially on slopes with warmer aspects. Here, 
noble fir (Abies procera) and Alaska-cedar often join the canopy with silver fir, western hemlock and 
Douglas-fir. The understory is dominated by big huckleberry (Vaccinium membranaceum) and 
beargrass (Xerophyllum tenax) is usually present. At higher elevations both C12 and C14 give way to 
the second most abundant class, C13–MOUNTAIN HEMLOCK, SILVER FIR AND CASCADE AZALEA 

FOREST. This class is characterized by the near total replacement of western hemlock by mountain 
hemlock, a shrub-dominated understory consisting primarily of big huckleberry and Cascade azalea 
(Rhododendron albiflorum), and a ground layer usually dominated by dwarf bramble (Rubus 
lasiococcus). 

Subalpine forests and woodlands 
The subalpine zone is characterized by the increasing presence of large canopy gaps in and between 
treed areas. The shade-intolerant subalpine fir becomes much more prominent throughout the park in 
this zone. It is the undisputed dominant subalpine tree species in the northeast, where C20–



 

110 
 

SUBALPINE FIR AND SITKA VALERIAN FOREST AND WOODLAND is found on middle to upper slopes at all 
but the most sheltered north-facing sites. Silver fir is usually present in these sites, at least as 
regeneration, and the understory is characterized by a lush herbaceous layer typically including dwarf 
bramble, Sitka valerian (Valeriana sitchensis), subalpine lupine (Lupinus latifolius) and smooth 
woodrush (Luzula hitchcockii). Drier woodlands above that—especially on steep south- and west-
facing slopes—are C23–MOUNT RAINIER SUBALPINE FIR AND WHITEBARK PINE WOODLAND, with 
whitebark pine (Pinus albicaulis) usually present and a dry meadow-like understory of subalpine 
lupine, green fescue (Festuca viridula), Cascade aster (Eucephalus ledophyllus) and spreading phlox 
(Phlox diffusa). Engelmann spruce (Picea engelmannii) is a frequent but rarely dominant associate 
found especially in the east-side upper montane and subalpine zones. Outside the northeast, C21–
MOUNTAIN HEMLOCK, SUBALPINE FIR AND HEATHER WOODLAND often signals the entry to the 
subalpine zone. These woodlands, transitional to mountain-heather shrublands above, are 
characterized by mountain hemlock and subalpine fir with openings occupied by pink mountain-
heather (Phyllodoce empetriformis) and Cascade blueberry (Vaccinium deliciosum). C20 remains 
common in places where mountain-heathers are less prominent throughout the park’s subalpine zone. 
At yet higher elevations, heavy snow accumulation limits the growth of conifers other than C26–
CONIFER KRUMMHOLZ AND TREED CLIFF in exposed locations where wind sweeps it clear. 

4.2.2. Broadleaf trees 
Communities dominated by deciduous broadleaf trees occupy two percent of the park. They are 
primarily a feature of floodplains. The colonization phase of floodplain successional dynamics is 
represented by B30–SUCCESSIONAL GRAVEL BAR SHRUBLAND. The dominant woody plants in these 
communities are red alder (Alnus rubra), black cottonwood (Populus trichocarpa), and Sitka willow 
(Salix sitchensis). Without repeated disturbance, these successional shrublands mature into B31–
BROADLEAF RIPARIAN AND SWAMP FOREST. The B31 canopy is composed of red alder, usually with 
codominant western hemlock and western redcedar. Salmonberry (Rubus spectabilis), lady fern 
(Athyrium filix-femina) and fragrant bedstraw (Galium triflorum) are common and abundant in the 
understory of these forests. Upland deciduous or mixed forests are rare at MORA and are included 
with C05–WESTERN HEMLOCK, DOUGLAS-FIR AND SWORD FERN FOREST or mapped as the tall 
shrubland class S45–VINE MAPLE SHRUBLAND. Bigleaf maple (Acer macrophyllum) is nearly always 
the main broadleaf component at these sites, which usually have developed following landslides. 

4.2.3. Upland tall shrubs 
Tall shrublands in uplands cover three percent of the park, occupying avalanche tracks, montane 
talus slopes and toe-slope debris aprons. Avalanches tend to impact the same slopes year after year, 
carving out chutes through montane and subalpine forests. The regular disturbances favor resilient 
and rapidly resprouting shrubs rather than tall and brittle trees. Sitka alder (Alnus viridis) bends 
rather than breaks when walloped by snow, and thrives in avalanche zones, moist talus and toe slopes 
in the montane zone. Although the species is not extremely common in the dataset, it is generally 
dominant where it occurs, and S43–SITKA ALDER SHRUBLAND is fairly abundant in the park. 
Salmonberry, lady fern, Brewer's miterwort (Pectiantia breweri) and red elderberry (Sambucus 
racemosa) are common associates here. Drier talus and toe slopes at somewhat lower elevations host 
S45–VINE MAPLE SHRUBLAND, in which vine maple (Acer circinatum) is often joined by young 
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bigleaf maple, a variety of smaller shrubs and bedstraw (Galium spp.). Vine maple is also very 
common in lowland coniferous forest understories. 

4.2.4. Upland shrublands 
Shorter shrublands in uplands cover six percent of the park, occupying disturbed areas at montane 
elevations and exposed areas with poor soil development at higher elevations. In the upper montane 
and subalpine zones, shrublands recovering from fire or otherwise undergoing succession toward 
conifers are often dominated by a mix of big huckleberry, Cascade blueberry, Sitka mountain-ash 
(Sorbus sitchensis) and Oregon-box (Paxistima myrsinites), often with prominent beargrass. These 
successional shrublands, mapped as S47–SUCCESSIONAL HUCKLEBERRY SHRUBLAND, are often found 
between forests and subalpine meadows. The iconic subalpine mountain-heather shrublands, S48–
SUBALPINE HEATHER SHRUBLAND, are dominated by pink mountain-heather, white mountain-heather 
(Cassiope mertensiana) and Cascade blueberry, usually with prominent subalpine lupine and other 
forbs. They are most extensive clockwise from the south side through the northwest of the park, and 
are found just above C21–MOUNTAIN HEMLOCK, SUBALPINE FIR AND HEATHER WOODLAND. There is a 
substantial transition zone in which the two classes mosaic at a scale of 10–20 meters, resulting in an 
extensive landscape of tree islands and heather openings. Succession toward mountain hemlock is 
usually evident in these areas. A gradual transition to S49–ALPINE HEATHER SHRUBLAND is evident 
with increasing elevation and exposure. This class is characterized by more compact vegetation with 
considerably fewer forbs, increased abundance of white mountain-heather, and reduced abundance of 
Cascade blueberry. It is associated with north-facing slopes and most extensive on the north side of 
the park. 

4.2.5. Upland herbaceous vegetation 
Lingering snowpack, low temperatures, desiccating winds and repeated disturbance create conditions 
under which only herbaceous plants can survive. A diverse assortment of upland herbaceous plant 
communities—including lush forb meadows, rocky graminoid meadows and sparse alpine cushion 
plants—share six percent of the park’s area. Herbaceous communities often transition across short 
distances, responding to finer-scale changes in topography, substrate and soil moisture than adjacent 
forests. 

Lowland, montane and subalpine elevations 
The lowest elevation herbaceous communities in the park occur in forest openings on bedrock-
limited soils and are mapped as H58–BEDROCK BALDS AND SPARSELY VEGETATED FOREST OPENINGS. 
The most accessible congregation of bedrock balds is near the Muddy Fork Cowlitz in and below 
Box Canyon, but they are found in a variety of settings in the park. Many sparsely vegetated shrub-
dominated areas on colluvial and glacial deposits below the closed forest line are also mapped as 
H58; there may be little that unifies these sites apart from their disturbed and early successional 
character. Lush meadows of subalpine lupine, showy sedge (Carex spectabilis), Sitka valerian 
(Valeriana sitchensis) and a variety of other herbaceous species are mapped as H53–SHOWY SEDGE & 

SITKA VALERIAN MEADOW. They are usually not far above the continuous forest line—in and around 
C20–SUBALPINE FIR AND SITKA VALERIAN FOREST AND WOODLAND—and are most abundant in the 
parklands within a few kilometers of Indian Bar, and nearly absent in the northwest. 
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Two subalpine meadow types are associated with the driest part of the park on Mount Rainier’s 
northeast side. H57–GREEN FESCUE DRY MEADOW occurs in large expanses on steep south-facing 
slopes and is particularly abundant near Sunrise. These dry meadows are characterized by green 
fescue (Festuca viridula), spreading phlox and Cascade aster, and are found throughout the park but 
are much more limited in extent outside the northeast, where they are closely linked to C23–MOUNT 

RAINIER SUBALPINE FIR AND WHITEBARK PINE WOODLAND. H56–SUBALPINE SUMMER-DRY GRASS-FORB 

MEADOW is much more geographically constrained, being limited to within a few kilometers of 
Sunrise. It covers most of Grand Park and other smaller flats and gentle slopes nearby, and is 
particularly characterized by woolly pussytoes (Antennaria lanata), fan-leaf cinquefoil (Potentilla 
flabellifolia) and alpine aster (Oreostemma alpigenum). Its habitat is marked by significant winter 
snow accumulation and is moist in the spring, but becomes quite dry by midsummer. 

Alpine elevations 
Variations in soil moisture, substrate and length of time since colonization contribute to the wide 
range of herbaceous alpine communities at Mount Rainier. We have subsumed a good bit of this 
variety into a widespread map class, H62–ALPINE SPARSE HERBACEOUS VEGETATION, which is 
characterized by partridgefoot (Luetkea pectinata), Parry’s rush (Juncus parryi) and exclusively 
alpine plants such as Piper’s woodrush (Luzula piperi) and Tolmie’s saxifrage (Micranthes tolmiei). 
This is the most abundant herbaceous map class in the park, found throughout the alpine zone on 
rocky upper slopes where snow lingers late into the growing season. Two alpine classes are strongly 
associated with pumice substrates, mostly in the northeast and especially on and around Burroughs 
Mountain. H64–ALPINE LUPINE PUMICE VEGETATION is found on west-facing alpine slopes and has 
reasonably high vegetative cover, typically including prairie lupine (Lupinus lepidus), spreading 
phlox and coiled-beak lousewort (Pedicularis contorta). It has strong similarities to H61–SPREADING 

PHLOX AND COMMON JUNIPER DRY MEADOW at OLYM, and the two classes should perhaps be 
combined. The more desolate H63–ALPINE BUCKWHEAT PUMICE VEGETATION is associated with 
colder and snowier east-facing slopes. The most commonly found plants there are dirty socks 
(Eriogonum pyrolifolium) and Davis’ knotweed (Aconogonon davisiae). 

4.2.6. Wetlands 
Less than one percent of the park is mapped as one of the five wetland map classes. Low-gradient 
areas conducive to wetland formation are mostly limited in the Cascades to lowland valleys and high-
elevation headwaters basins. MORA has a higher base elevation than the other NCCN parks and the 
opportunities for extensive lowland wetlands are correspondingly limited; consequently, most of its 
wetlands are in the subalpine zone. There are riparian communities and occasional midslope seeps in 
the intermediate montane zones, but few large wetlands. 

Lowlands 
Lowland herbaceous wetlands, mapped as H50W–LOWLAND MARSH AND MEADOW, are usually 
dominated by water sedge (Carex aquatilis) and other graminoids and usually are found along pond 
and lake margins. The very limited such wetlands in the park are on the south side, mostly near the 
Nisqually and Ohanapecosh Rivers. S40W–LOW ELEVATION SHRUB SWAMP wetlands, usually 
dominated by Sitka willow (Salix sitchensis) and rose spirea (Spiraea douglasii), may ring 
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herbaceous vegetation adjacent to a pond or occur on wet toe slopes or areas where drainage is 
impeded. They appear to be more common in the park but are still quite limited in extent. 

Subalpine and alpine 
Herbaceous subalpine wetlands, mapped as H51W–SUBALPINE HERBACEOUS WETLAND, may be 
composed of a mix of fan-leaf cinquefoil, black alpine sedge (Carex nigricans), lakeshore sedge 
(Carex kelloggii) and a variety of other forbs and sedges. These wetlands are found in high-elevation 
basins throughout the park. Occasionally dense patches of Barclay’s willow (Salix barclayi) may 
dominate these environments; these are mapped as S41W–SUBALPINE WILLOW WETLAND. The two 
types often form mosaics, with willow wetlands adjacent to low-gradient streams and surrounded by 
herbaceous wetlands. Dense turfy patches of black alpine sedge and other sedges, usually with 
prominent partridgefoot, occur throughout the alpine zone in depressions holding snow beds or 
collecting melt from above. H60W–BLACK ALPINE SEDGE WETLAND is rarely connected to the water 
table; patches are often inclusions within subalpine or alpine heather shrublands. Rock barrens are 
usually nearby. 

4.2.7. Natural abiotic areas 
Unvegetated natural areas are extensive in the park, cumulatively occupying nearly a quarter of the 
landscape. W82–EXPOSED SNOW AND ICE is the most abundant class, covering eight percent of the 
park. Ice is also present beneath the surface at a significant fraction of the three percent of the park 
mapped as R71–ALLUVIAL BARREN AND DEBRIS-COVERED ICE. R72–COLLUVIAL BARREN and R73–
BEDROCK BARREN occupy six and four percent of the park, respectively. Although most of these 
barrens may entirely lack vascular plants, many include sparse vegetation; unfortunately, they were 
not well-sampled at MORA so cannot be described floristically. W81–FRESH WATER in the form of 
rivers and lakes covers one percent of the park. Mowich is by far the largest of the lakes, all of which 
are natural. 

4.2.8. Natural and semi-natural disturbed landscapes 
Only one-tenth of one percent of the park is mapped as M92–BURNED WITH UNCERTAIN VEGETATION. 
These are areas that have experienced severe fire in the last 35 years but do not resemble any of the 
fire-adapted map classes discussed above. They were not well-sampled in our fieldwork; vegetation 
cover is likely low and probably consists of a variety of early successional plants. 

4.2.9. Development 
Roads and developed areas cumulatively occupy 0.6% of the park. Unsurprisingly, this is 
substantially more than in OLYM or NOCA. 

4.3. Influence of disturbance 
The USNVC and the mapping classification are best developed for stable climax and late seral 
vegetation types, but disturbances are a major driver of vegetation composition in the park. Post-
disturbance trajectories may follow consistent patterns of vegetation colonization or recovery 
represented in the classification, but also may result in unique combinations of species that do not fit 
the classification well. Both scenarios are discussed below. 
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The most common landscape change agent in the park is periodic severe flooding resulting from 
storms and glacial outbursts (Antonova et al. 2014). Rivers in the lower valleys regularly change 
course, washing away established forests and over time resulting in a patchwork of even-aged 
broadleaf forests and older conifer-dominated forests. Less destructive flooding can kill standing 
trees or bury the understory in cobbles, leading to atypical plant communities that are not captured in 
the classification. In the absence of continued flooding, abandoned channels, banks, and bars are 
eventually colonized and follow trajectories toward climax conifer forests. Colonizing woody plants 
and their herbaceous associates often show consistent floristics, which we map as B30–
SUCCESSIONAL GRAVEL BAR SHRUBLAND, but a wide variety of species are possible depending on 
propagule availability, substrate and water table depth. 

Avalanches represent another important agent of change. They periodically shatter tree trunks, 
favoring shorter and more flexible tall shrub plant communities along their established paths. These 
communities, which repeat regularly across the upper and lower montane zones, are mapped as S43–
SITKA ALDER SHRUBLAND and S45–VINE MAPLE SHRUBLAND. The less severe impacts in adjacent 
areas result in less consistent outcomes that are difficult to predict or map. The outer flanks of 
avalanche tracks often contain battered conifer forests with variable understories, and concentrated 
debris deposition zones in avalanche runouts often feature a haphazard and opportunistic mix of 
subalpine plants displaced from above with montane plants from nearby. Species composition in 
these areas varies from site to site and would not be easily placed in any classification. 

Glaciers in the park have receded significantly, mostly over the Holocene, but also more recently 
(Beason 2017). They have left lakes in their wakes, scoured bedrock benches, and piled unsorted 
glacial till in moraines of various ages. The vegetation (or lack thereof) on these landforms depends 
on age, climate, water table and propagule availability. Older moraines host subalpine plant 
communities such as S48–SUBALPINE HEATHER SHRUBLAND or even conifer forests. Younger 
moraines are less likely to host a cohesive plant community and are instead dominated by a 
smattering of whatever nearby plant species happen to get a toehold. These early seral assemblages 
are often unlike any map classes, but are mapped as their best match: for alpine moraines, this may 
be S49–ALPINE HEATHER SHRUBLAND or H62–ALPINE SPARSE HERBACEOUS VEGETATION; on terminal 
moraines in valleys it is often B30–SUCCESSIONAL GRAVEL BAR SHRUBLAND or S43–SITKA ALDER 

SHRUBLAND. 

We created several map classes to account for land cover types not treated in the associations: areas 
significantly disturbed by fire or logging and developed and agricultural land within the park and 
adjacent mapped areas. These land cover types were not inventoried either due to access issues or 
because they do not contain native vegetation represent significant conservation value. Although they 
cannot be described floristically, they were mapped to general land-cover/land-use categories to 
prevent gaps in the map coverage. 

Although fire has left its legacy in the map (see Hemstrom 1979), only two significant fires have 
occurred in the park in the last 35 years. The Redstone fire (115 hectares, west of the West Fork 
White River) and the Panther fire (21 hectares, just east of Highway 123 in the Ohanapecosh Valley) 
both burned in 2003. Areas not resembling fire-compatible vegetation classes within those burns 
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were mapped instead as M92–BURNED WITH UNCERTAIN VEGETATION. Variability in pre-fire 
vegetation, fire severity, and propagule availability result in diverse recovery pathways, limiting our 
capability to map these areas with more specificity. 

Logged areas outside the park boundary that could not be confidently assigned to one of the other 
map classes were coded as M93–TIMBERLAND WITH UNCERTAIN VEGETATION. Atypical conditions are 
found in these areas due to forest management practices such as replanting and the use of herbicides 
to suppress growth of deciduous trees and shrubs (Washington DNR 2018). M94–DEVELOPMENT 
includes developed sites within the park including visitor centers, housing, and maintenance 
facilities. It also includes the community of Longmire as well as various farmed, residential, or 
industrial lands outside the park. Park roads are mapped as M95–ROADS IN PARK. 

4.4. Guidelines for map use 
Before using the map products, users should thoroughly review both the map class descriptions and 
the accuracy assessment. The map represents existing vegetation as of summer 2015, although it may 
reflect the impacts of disturbance occurring before August 16, 2016. Vegetation patches smaller than 
500 m2 may not appear in the map; patches smaller than 90 m2 are definitely not captured. Narrow 
ribbon-like artifacts may be present near transitions between distinct lifeforms. In order to capture 
real vegetation that occurs in elongated slender patches, we did not aggressively filter these artifacts. 

For some map uses, the fine floristic distinctions between our map classes will likely be unnecessary. 
We’ve provided some guidance on merging map classes into dominant lifeform groups, but likely 
other combinations will be useful. When combining map classes into broader categories (e.g. silver 
fir forests, mountain-heather dwarf-shrublands), consider floristic similarity, spatial proximity (e.g., 
“are the classes typically found adjacent on the ground?”), and confusion (e.g., “how confused are 
the classes in the accuracy assessment?”). 

Planning of management or monitoring activities based on the vegetation map should always 
incorporate a consideration of the assessed accuracy of the map classes involved. Whether user’s or 
producer’s accuracy is a more appropriate metric depends on the issue. If a monitoring study requires 
field sampling within a map class, the class user’s accuracy should be considered before sending 
crews to randomly generated locations. For map classes with lower user’s accuracies, additional steps 
should be taken—at a minimum, examining recent aerial imagery—to ensure the sample locations 
are indeed occupied by the target class. On the other hand, the practicality of delineating the spatial 
bounds of a vegetation type is a function of the class producer’s accuracy. Map classes with low 
producer’s accuracy are not mapped in many places where they are present, so their distribution will 
be less clear. In some cases, an application might require consideration of the full population 
contingency table. For instance, an assessment of the impacts of a mapped disturbance event on 
habitat availability would need to estimate the fractional composition of map classes in the disturbed 
area. Although a simple summary based on the mapped classes would be easy, a better approach 
might be to apply area estimate corrections based on the population contingency table, as was done to 
estimate map class extents for Table 20.  
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