# OBSERVATIONS, ECOLOGICAL MONITORING, AND TEMPORAL DATA

within the NatureServe Network

all that and a bag of chips

with slides from
Jimmy Kagan and
Emilie Henderson at INR





#### **Outline**

- What are we talking about here? Why does it matter?
- Recap of BWB 2015 Temporal Data Discussion
- Relevant Network teams
  - Data Backlog Review Team
  - Spatial Methodology Review Team
  - Species Distribution Modeling Network
- Mapping and Modeling
- Integration of Observations
- Application to Monitoring
- DISCUSSION



### What are we talking about here?

□ As a network, we are looking more and more towards OBSERVATIONS

as a necessary source of information

- Observations can inform
  - Distributions
  - Habitat suitability
  - Recent vs Historical Range
  - Species models
  - □ Trends ?
- How best to incorporate into Network projects, products, services



### Why is temporal data important?

- Indicators
- Element Rank Calculator
- Climate change
- Shrinking or expanding ranges
- Inform state and transition models
- Conservation and restoration priorities
- Management outcomes
- Monitoring species, habitats, ecosystem health



State and transition model example

#### National Directives

- President's Council of Advisors on Science and Technology report on Sustaining Environmental Capital (2011)
  - Need to "coordinate cross-scale and cross agency collaboration in monitoring" for biodiversity
- □ USFS Forest Planning Rule (2012) on Ecological Integrity & Ecosystem Services
  - To aid managers in describing ecosystems when conducting Forest Land Management Plan revisions and to provide a basis for monitoring ecosystem integrity and the diversity of plant and animal communities

#### NatureServe Network Directives

- □ Observation Data Standard (2006)
  - Obs are fundamental for scientific inventory, conservation planning, habitat mgmt, invasive species assessments, predictive range modeling, monitoring, and much more
- □ Strategic Plan (2012-2016)
  - Better communication of trends in the distribution and condition of species and ecosystems across the Americas
- □ Citizen Science Strategy (2014)
  - Threats are outpacing rate of professional monitoring; citizen-collected observation datasets can help fill this need
  - "Large volumes of up-to-date data are critical to any 'early warning system' capable of alerting us to declining populations or habitats"
  - Improve ability to detect trends

#### Recap of 2015 Temporal Data Discussion

- EO Ranks
  - take a lot of time and info, not all programs using them
  - could start with E vs H, scripts to apply based on LAST\_OBS
- G and S Ranks
  - add a field to track WHY rank changed: new info vs actual change in status
- Threats
  - could add a Biotics table to track threats over time, tie to Element Rank
     Calculator threat sections

#### Data Backlog Working Group

#### Join the workshop on Thursday 2:00-3:00pm San Juan Ballroom 1

- □ Temporal aspect of EOs data is swamped when all data is rolled into EO; better to track at SF or VISIT levels?
  - threats, management, population counts (all w dates)
  - add an SF Rank and Rank Date to track health of diff. areas of EOs
- Build tools to roll-up info from VISIT/SFs to EO
- How will Kestrel relate to Biotics?
  - Workflow for creating SFs from Visits/Observations

### Spatial Methodology Review Team

#### Join the workshop on Thursday 8:30am-Noon San Juan Ballroom 1

- Scoping ways to assess accuracy and precision of observations
  - Time: compare to phenology, seasonality of species
  - Location: much like with source features, buffer obs location based on spatial accuracy, how pt was mapped e.g., GPS vs site centroid
  - Species ID: could tag observers w level of expertise for various species categories e.g., professional wildlife biologist would have high accuracy in IDing animals
- Could generate rules to combine all these into an observation
   Confidence score

#### Spatial Methodology Review Team

Join the workshop on Thursday 8:30am-Noon San Juan Ballroom 1

Negative Obs and Determined Absence data

- Most programs interested in it, but need:
  - Standards
  - Data management system
  - Tools to collect data consistently (for partners also)
  - Ways to import existing datasets
  - Staff and resources
- But has so many uses! And Network could be the first to provide as a standardized product.



#### Species Distribution Models for Threatened Species

- Need a nat'l monitoring program for at-risk species and ecol. systems
- Presence/Absence data provided by obs a great asset
- Monitor changes in species ranges (terrestrial vertebrates, trees, shrubs);
   tap into LiDAR and other imagery resources
- Utilize existing range maps (GAP, USFS planning, State Wildlife Strategies)
- Range maps need peer review and update capacity
- Online tools essential to make this happen
- Great opportunity for citizen science

#### Species Distribution Models for Threatened Species



Recent observations suggest that the species is persisting in many areas and is not now of high conservation concern (R. B. Bury, 2013)

#### Aneides ferreus, Clouded Salamander



#### Habitat Map



Historic Habitat Map



#### Species Distribution Models for Threatened Species



Some recent confirmed observations of Clouded Salamander on iNaturalist



Join the workshop:
Species Distribution
Models for
Threatened and
Endangered Species

Wednesday 8:30am-Noon San Juan Ballroom 1

#### Mapping and Modeling



#### A better alternative to dot maps and range maps :

Build a model of the environmental conditions at points of known occurrence...

**MODELING** 

... then identify and map all areas where those conditions occur within the study area.

**MAPPING** 

# <u>Deductive models:</u> spatial expressions of expert opinion, verbal habitat descriptions, or other qualitative data



#### **Inductive models: CART ANALYSIS, Random Forest**

Points of known presence, points of suspected absence

## Spatial layers of environmental conditions







### Modeling Sage-Grouse Habitat

- Greater Sage-Grouse nearly listed on US Endangered Species List
- Instead of listing, many public-private agreements to manage lands for grouse conservation

Lots of work now to plan, manage, and monitor sage-grouse habitat

and population health





### Model for Sage-Grouse Habitat Workflow

 Model and map vegetation from survey plots, and GIS layers describing:

Topography, Climate, Soil, Imagery

 Model and map greater sage-grouse seasonal habitat from known grouse locations (telemetry, and leks), background points, and GIS layers describing:

Topography, Climate, Soil, Vegetation

#### Sage-Grouse Habitat Inputs

Plot Data (2694 plots from years 2001 – 2015)

- Landfire Plot Reference Database
- Ecoplots
- AIM plots from BLM
- Institute for Natural Resources field surveys

Vegetation Plot Data
Or

**Species Location Data** 



Raster data describing the environment:

Topography
Soil
Climate
Imagery (Landsat, Naip)
Or
Vegetation

### Methods: modeling techniques

- Sage-grouse habitat: Random Forest
  - Model prediction ~ habitat probability



- Vegetation: Random Forest Nearest Neighbor <u>Imputation</u>
  - Model prediction = best vegetation plot



### Gradient Nearest Neighbor Structure Maps

- Developed by LEMMA group @ Oregon State U
- Data available for CA, OR, and WA



http://lemma.forestry.oregonstate.edu/



#### Methods: GNN



Using nationally available FIA & AIM data to generate midscale data CCA = Conoco Correspondence Analysis

### Methods: Random Forest (RFNN)

One Classification Tree:



### Methods: Random Forest (RFNN)

#### A whole forest of classification trees!



- Each tree model is built from a random subset of explanatory variables and input data.
- When the model is applied to mapped data, each tree 'votes' on which Plot best represents a pixel should be.



USFWS grouse image



### Plot scale accuracy



### 500 ha scale accuracy



### 50,000 ha scale accuracy





### Gorse (Ulex europaeus) Modeling on OR Coast



- Gorse is an invasive shrub that dramatically changes dune ecology and poses a fire risk
- □ Gorse fires twice destroyed the town of Bandon, OR in1914 and 1936
- Invades dunes and golf courses
- Interest in learning where seed sources are

### Gorse (Ulex europaeus) Modeling on OR Coast



- Developed a Gorse probability map for OR coast
- Based partly on observation data from iMaplnvasives, which includes:
  - Agency data (local, state, federal)
  - Non-profit and land trust data
  - Citizen-sourced observations







#### Integration of Observations

- Citizen-Sourced
  - □ Global Biodiversity Information Facility (GBIF)
  - National Ecological Observation Network (NEON)
  - □ iNaturalist (Happy Hour Tues 5:30pm Ficus Café)
  - DataONE
  - eBird
- Agency-Sourced
  - Forest Inventory Analysis (USFS)
  - Inventory and Monitoring (NPS)
  - Assessment, Inventory, and Monitoring (BLM)



#### Integration of Observations

- Citizen Science data
  - □ Time consuming to find, evaluate, mine datasets
  - Develop list of datasets in use by Network partners, scripts to help process
- Agency Observation data can be messy too
  - Tools like OpenRefine (Data Manager Workshop Friday 10:30-noon)
  - Share scripts to cross-walk data (e.g., scientific names to ESTs)
- Revisit Observation Data Standard (2006)
- Kestrel and Biotics?
- Other observation data management systems?

#### Application to Monitoring

#### Ecoinformatics: supporting ecology as a data-intensive science,

William K. Michener, Matthew B. Jones, 2012

- Ecology moving into the realm of "big science", massive datasets and analysis
- "scientists and institutions share observation platforms, accumulate and analyze massive amounts of data, and collaborate across institutions to address environmental grand challenge questions"
- Needs: Standard protocols; Promoting data sharing; Transparency;
   Reproducibility

#### Application to Monitoring

Ecological monitoring with citizen science: the design and implementation of schemes for recording plants in Britain and Ireland, Pescott et al. 2015

- "Knowledge of species' abundances at finer-scales often provides a more powerful means of detecting and interpreting change"
- Botanical Society of Britain and Ireland (BSBI) volunteer surveys in 1960s led to documentation of widespread decline of many native plants: "widely considered as one of the most significant applications of the data collected"
- Contributed (and continues to add) greatly to Atlas of British Flora

#### Application to Monitoring

Ecological monitoring with citizen science: the design and implementation of schemes for recording plants in Britain and Ireland, Pescott et al. 2015

- BSBI surveys repeated in 2003-2004 for comparison to historical data,
   used same methodology and grid squares as before
- Highly successful in detecting signals of ecological change
- BSBI will re-run the survey in the early 2020s
- New abundance-based "National Plant Monitoring Scheme" can be applied to continue this work by volunteers for other projects

#### Discussion



Pileated Woodpecker *Dryocopus pileatus*Breeding Bird Survey Summer Distribution Map, 1994 - 2003
(http://www.mbr-pwrc.usgs.gov/bbs/htm03/ra2003\_blue/ra04050.htm)