Species Data:

Stephanomeria malheurensis

Malheur wire-lettuce

Vascular Plant

Index Result:

Highly Vulnerable

Confidence: Very High

(Confidence in species information)

Assessor: Lindsey Wise

Geographic Area:

Harney County, Oregon

Range Rel.:

Entire range

Cave/Ground Water Obligate:

No

GRank:

G1

SRank:

S1

Climate Change Vulnerability Index Values:

Temperature Scope

<table>
<thead>
<tr>
<th>Value</th>
<th>Index Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A >5.5F</td>
<td>0</td>
</tr>
<tr>
<td>A 5.1F</td>
<td>0</td>
</tr>
<tr>
<td>A 4.5F</td>
<td>100</td>
</tr>
<tr>
<td>A 3.9F</td>
<td>0</td>
</tr>
<tr>
<td>A <3.9F</td>
<td>0</td>
</tr>
</tbody>
</table>

Hamon AET:PET Moisture Metric Scope

<table>
<thead>
<tr>
<th>Value</th>
<th>Index Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>< -0.119</td>
<td>0</td>
</tr>
<tr>
<td>-0.119</td>
<td>0</td>
</tr>
<tr>
<td>-0.096</td>
<td>0</td>
</tr>
<tr>
<td>-0.073</td>
<td>100</td>
</tr>
<tr>
<td>-0.05</td>
<td>0</td>
</tr>
<tr>
<td>>-0.028</td>
<td>0</td>
</tr>
</tbody>
</table>

Sea level rise

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>N</td>
</tr>
</tbody>
</table>

Natural barriers

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2a</td>
<td>N</td>
</tr>
</tbody>
</table>

Anthropogenic barriers

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2b</td>
<td>N</td>
</tr>
</tbody>
</table>

Climate Change mitigation

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3</td>
<td>SI</td>
</tr>
</tbody>
</table>

Dispersal/Movement

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>U</td>
</tr>
</tbody>
</table>

Historical thermal niche

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2ai</td>
<td>N</td>
</tr>
</tbody>
</table>

Physiological thermal niche

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2aii</td>
<td>N</td>
</tr>
</tbody>
</table>

Historical hydrological niche

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2bi</td>
<td>GI</td>
</tr>
</tbody>
</table>

Physiol. hydrological niche

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2bii</td>
<td>Inc</td>
</tr>
</tbody>
</table>

Disturbance dependence

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2c</td>
<td>N</td>
</tr>
</tbody>
</table>

Ice/snow dependence

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2d</td>
<td>N</td>
</tr>
</tbody>
</table>

Physical habitat restrictions

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>SI</td>
</tr>
</tbody>
</table>

Other spp create habitat

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4a</td>
<td>N</td>
</tr>
</tbody>
</table>

Dietary Versatility

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4b</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Pollinator Versatility

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4c</td>
<td>N</td>
</tr>
</tbody>
</table>

Other spp for dispersal

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4d</td>
<td>N</td>
</tr>
</tbody>
</table>

Other spp interaction

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4e</td>
<td>N</td>
</tr>
</tbody>
</table>

Genetic variation

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5a</td>
<td>U</td>
</tr>
</tbody>
</table>

Genetic bottleneck

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5b</td>
<td>U</td>
</tr>
</tbody>
</table>

Phenological response

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6</td>
<td>U</td>
</tr>
</tbody>
</table>

Documented response

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>U</td>
</tr>
</tbody>
</table>

Modeled change

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2</td>
<td>U</td>
</tr>
</tbody>
</table>

Modeled overlap

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>D3</td>
<td>U</td>
</tr>
</tbody>
</table>

Modeled protected Areas

<table>
<thead>
<tr>
<th>Value</th>
<th>Affect to Vulnerability</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>U</td>
</tr>
</tbody>
</table>

Assessment Notes:
Climate and precipitation data from Climate Wizard using the A1B emissions scenario and ensemble average general circulation model. Historical = past 50 years; Future = mid-century (2050s). Species data from ORBIC database. Assessment performed in conjunction with the Element Rank Calculator.

Index Scores:

Extremely Vulnerable: Abundance and/or range extent within geographical area assessed extremely likely to substantially decrease or disappear by 2050.

Highly Vulnerable: Abundance and/or range extent within geographical area assessed likely to decrease significantly by 2050.

Moderately Vulnerable: Abundance and/or range extent within geographical area assessed likely to decrease by 2050.

Not Vulnerable/Presumed Stable: Available evidence does not suggest that abundance and/or range extent within the geographical area assessed will change (increase/decrease) substantially by 2050. Actual range boundaries may change.

Not Vulnerable/Increase Likely: Available evidence suggests that abundance and/or range extent within geographical area assessed is likely to increase by 2050.

http://www.natureserve.org/prodServices/climatechange/ccvi.jsp